% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % The Project Gutenberg EBook of The First Steps in Algebra, by % % G. A. (George Albert) Wentworth % % % % This eBook is for the use of anyone anywhere at no cost and with % % almost no restrictions whatsoever. You may copy it, give it away or % % re-use it under the of the Project Gutenberg License included % % with this eBook or online at www.gutenberg.net % % % % % % Title: The First Steps in Algebra % % % % Author: G. A. (George Albert) Wentworth % % % % Release Date: July 9, 2011 [EBook #36670] % % Most recently updated: June 11, 2021 % % % % Language: English % % % % Character set encoding: UTF-8 % % % % *** START OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA ***% % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\ebook{36670} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% %% Packages and substitutions: %% %% %% %% book: Required. %% %% inputenc: Standard DP encoding. Required. %% %% %% %% fix-cm: For larger title page fonts. Optional. %% %% ifthen: Logical conditionals. Required. %% %% %% %% amsmath: AMS mathematics enhancements. Required. %% %% amssymb: Additional mathematical symbols. Required. %% %% %% %% alltt: Fixed-width font environment. Required. %% %% array: Enhanced tabular features. Required. %% %% %% %% indentfirst: Indent first word of each sectional unit. Optional. %% %% textcase: Apply \MakeUppercase (et al.) only to text, not math. %% %% Required. %% %% %% %% calc: Length calculations. Required. %% %% soul: Spaced text. Optional. %% %% %% %% fancyhdr: Enhanced running headers and footers. Required. %% %% %% %% graphicx: Standard interface for graphics inclusion. Required. %% %% wrapfig: Illustrations surrounded by text. Required. %% %% %% %% geometry: Enhanced page layout package. Required. %% %% hyperref: Hypertext embellishments for pdf output. Required. %% %% %% %% %% %% Producer's Comments: %% %% %% %% Changes are noted in this file in two ways. %% %% 1. \DPtypo{}{} for typographical corrections, showing original %% %% and replacement text side-by-side. %% %% 2. [** TN: Note]s for lengthier or stylistic comments. %% %% %% %% Compilation Flags: %% %% %% %% The following behavior may be controlled by boolean flags. %% %% %% %% ForPrinting (false by default): %% %% Compile a screen-optimized PDF file. Set to true for print- %% %% optimized file (large text block, two-sided layout, black %% %% hyperlinks). %% %% %% %% Both print and screen layout are relatively loose, and contain %% %% hard-coded page breaks (\PrintBreak, \ScreenBreak, \newpage). %% %% %% %% %% %% PDF pages: 269 (if ForPrinting set to false) %% %% PDF page size: 4.75 x 7" (non-standard) %% %% PDF bookmarks: created, point to ToC entries %% %% PDF document info: filled in %% %% Images: 3 pdf diagrams %% %% %% %% Summary of log file: %% %% * Large numbers of visually-harmless over-full hboxes and vboxes %% %% from DPalign* and DPgather* environments. %% %% %% %% %% %% Compile History: %% %% %% %% July, 2011: adhere (Andrew D. Hwang) %% %% texlive2007, GNU/Linux %% %% %% %% Command block: %% %% %% %% pdflatex x2 %% %% %% %% %% %% July 2011: pglatex. %% %% Compile this project with: %% %% pdflatex 36670-t.tex ..... TWO times %% %% %% %% pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) %% %% %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \listfiles \documentclass[12pt]{book}[2005/09/16] %%%%%%%%%%%%%%%%%%%%%%%%%%%%% PACKAGES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage[utf8]{inputenc}[2006/05/05] \usepackage{ifthen}[2001/05/26] %% Logical conditionals \usepackage{amsmath}[2000/07/18] %% Displayed equations \usepackage{amssymb}[2002/01/22] %% and additional symbols \usepackage{alltt}[1997/06/16] %% boilerplate, credits, license \usepackage{array}[2005/08/23] %% extended array/tabular features \usepackage{multicol} \usepackage{graphicx}[1999/02/16]%% For diagrams \usepackage{indentfirst}[1995/11/23] \usepackage{textcase}[2004/10/07] \usepackage{calc}[2005/08/06] % for running heads \usepackage{fancyhdr} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Interlude: Set up PRINTING (default) or SCREEN VIEWING %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ForPrinting=true (default) false % Asymmetric margins Symmetric margins % Black hyperlinks Blue hyperlinks % Start Preface, ToC, etc. recto No blank verso pages % % Chapter-like ``Sections'' start both recto and verso in the scanned % book. This behavior has been retained. \newboolean{ForPrinting} %% UNCOMMENT the next line for a PRINT-OPTIMIZED VERSION of the text %% %\setboolean{ForPrinting}{true} %% Initialize values to ForPrinting=false \newcommand{\Margins}{hmarginratio=1:1} % Symmetric margins \newcommand{\HLinkColor}{blue} % Hyperlink color \newcommand{\PDFPageLayout}{SinglePage} \newcommand{\TransNote}{Transcriber's Note} \newcommand{\TransNoteCommon}{% Minor typographical corrections and presentational changes have been made without comment. \bigskip } \newcommand{\TransNoteText}{% \TransNoteCommon This PDF file is optimized for screen viewing, but may easily be recompiled for printing. Please see the preamble of the \LaTeX\ source file for instructions. } %% Re-set if ForPrinting=true \ifthenelse{\boolean{ForPrinting}}{% \renewcommand{\Margins}{hmarginratio=2:3} % Asymmetric margins \renewcommand{\HLinkColor}{black} % Hyperlink color \renewcommand{\PDFPageLayout}{TwoPageRight} \renewcommand{\TransNote}{Transcriber's Note} \renewcommand{\TransNoteText}{% \TransNoteCommon This PDF file is optimized for printing, but may easily be recompiled for screen viewing. Please see the preamble of the \LaTeX\ source file for instructions. } }{% If ForPrinting=false, don't skip to recto \renewcommand{\cleardoublepage}{\clearpage} } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% End of PRINTING/SCREEN VIEWING code; back to packages %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \ifthenelse{\boolean{ForPrinting}}{% \setlength{\paperwidth}{8.5in}% \setlength{\paperheight}{11in}% \usepackage[body={5in,8in},\Margins]{geometry}[2002/07/08] }{% \setlength{\paperwidth}{4.75in}% \setlength{\paperheight}{7in}% \raggedbottom \usepackage[body={4.5in,6in},\Margins,includeheadfoot]{geometry}[2002/07/08] } \providecommand{\ebook}{00000} % Overridden during white-washing \usepackage[pdftex, hyperref, hyperfootnotes=false, pdftitle={The Project Gutenberg eBook \#\ebook: The First Steps in Algebra}, pdfauthor={George Albert Wentworth}, pdfkeywords={Peter Vachuska, Chuck Greif, Andrew D. Hwang Project Gutenberg Online Distributed Proofreading Team}, pdfstartview=Fit, % default value pdfstartpage=1, % default value pdfpagemode=UseNone, % default value bookmarks=true, % default value linktoage=false, % default value pdfpagelayout=\PDFPageLayout, pdfdisplaydoctitle, pdfpagelabels=true, bookmarksopen=true, bookmarksopenlevel=1, colorlinks=true, linkcolor=\HLinkColor]{hyperref}[2007/02/07] %%%% Fixed-width environment to format PG boilerplate %%%% \newenvironment{PGtext}{% \begin{alltt} \fontsize{8.1}{9}\ttfamily\selectfont}% {\end{alltt}} %% No hrule in page header \renewcommand{\headrulewidth}{0pt} \setlength{\extrarowheight}{2pt} \setlength{\arraycolsep}{2pt} % Tighten up spacing surrounding multicols environments \setlength{\multicolsep}{8pt plus 4pt minus 8pt} \setlength{\parskip}{6pt plus 6pt minus 4pt} % Check for specified remaining height on current page \newcommand{\Require}[1][2\baselineskip]{% \setlength{\TmpLen}{\pagegoal-\pagetotal}% \ifthenelse{\lengthtest{0pt < \TmpLen}\and\lengthtest{\TmpLen < #1}}{% \vfil\newpage% }{}% } % Hard-coded page breaks for print- and screen-formatted versions \newcommand{\PrintBreak}{\ifthenelse{\boolean{ForPrinting}}{\newpage}{}} \newcommand{\ScreenBreak}{\ifthenelse{\not\boolean{ForPrinting}}{\newpage}{}} \newcommand{\PrintStretch}[1]{% \ifthenelse{\boolean{ForPrinting}}{\enlargethispage{#1}}{}% } % Running heads \newcommand{\FlushRunningHeads}{\clearpage\fancyhf{}\cleardoublepage} \newcommand{\RHead}[1]{\footnotesize\MakeUppercase{#1}} \newcommand{\SetRunningHeads}[2][First Steps in Algebra.]{% \pagestyle{fancy} \fancyhf{} \setlength{\headheight}{15pt} \thispagestyle{plain} \fancyhead[CE]{\RHead{#1}} \fancyhead[CO]{\RHead{#2}} \ifthenelse{\boolean{ForPrinting}} {\fancyhead[RO,LE]{\thepage}} {\fancyhead[R]{\thepage}} } \newcommand{\BookMark}[2]{\phantomsection\pdfbookmark[#1]{#2}{#2}} %\Chapter[ToC entry]{Number.}{Heading title} \newcommand{\Chapter}[3][]{% \cleardoublepage \phantomsection \label{chap:#2} \ifthenelse{\equal{#2}{I.}}{% \begin{center} \textbf{\Large FIRST STEPS IN ALGEBRA.} \tb \end{center} }{}% \section*{\normalfont\centering\large CHAPTER #2} \subsection*{\normalfont\centering\small \MakeUppercase{#3}} \SetRunningHeads{#3}% \ifthenelse{\equal{#1}{}}{% \addtocontents{toc}{\protect\ToCLine{#2}{#3}}% \BookMark{0}{Chapter #2 #3} }{% \addtocontents{toc}{\protect\ToCLine{#2}{#1}}% \BookMark{0}{Chapter #2 #1} } } \newcommand{\Section}[1]{\subsection*{\centering\normalfont\small\scshape #1}} % Numbered units \newcommand{\Paragraph}[1]{\medskip\par\textbf{#1}} \newcommand{\Exercise}[2][]{% \Require[3\baselineskip] \subsection*{\centering\small Exercise #2} \ifthenelse{\not\equal{#1}{}}{% \subsubsection*{\centering\normalfont\small\scshape #1} }{} \phantomsection\label{exer:#2}% } \newcommand{\Preface}{% \FlushRunningHeads \pagestyle{fancy} \section*{\centering\Large PREFACE.} \SetRunningHeads[Preface.]{Preface.} \BookMark{0}{Preface.} } \newcommand{\Signature}[2]{% \medskip% \null\hfill#1 \\ \hspace*{\parindent}#2% } % N.B. Re-defines the \Item command \newcommand{\Answers}{ \FlushRunningHeads \pagestyle{fancy} \phantomsection \label{answers} \section*{\centering\Large ANSWERS.} \SetRunningHeads[Answers.]{Answers.} \addtocontents{toc}{\protect\ToCLine{}{Answers.}}% \BookMark{0}{Answers.} \ifthenelse{\not\boolean{ForPrinting}}{\footnotesize}{\small}% \renewcommand{\Item}[1]{ \vspace{4pt plus 16pt}\makebox[1em][r]{\textbf{##1}\ }\hangindent 2.5em% } } % For internal use to keep track of current number of columns \newcommand{\CurrCols}{1} \newcommand{\ResetCols}[1][1]{% \ifthenelse{\not\equal{\CurrCols}{1}}{% \end{multicols} }{} \renewcommand{\CurrCols}{#1} \ifthenelse{\not\equal{#1}{1}}{% \begin{multicols}{#1}% }{} } % For internal use \newcommand{\AnsSectHead}[2]{ \subsection*{% \centering\small #1 #2 \hyperref[exer:#2]{Page \pageref{exer:#2}} } } % \AnsTo[cols]{Exercise}{42.} \newcommand{\AnsTo}[3][3]{% \ifthenelse{\not\equal{#3}{1.}}{% Not first group \ifthenelse{\not\equal{\CurrCols}{1}}{% \end{multicols} } }{} \renewcommand{\CurrCols}{#1}% \ifthenelse{\not\equal{#1}{1}}{% \begin{multicols}{#1}[\AnsSectHead{#2}{#3}] }{% \AnsSectHead{#2}{#3} } } % Semantic boldface \newcommand{\Defn}[1]{\textbf{#1}} \newcommand{\Dictum}[1]{\Require\textbf{#1}} % Semantic small type \newenvironment{Remark}[1][]{\par\small\textsc{#1}}{\par} \newenvironment{Soln}[1][]{\par\small\textsc{#1}}{\par} % Semantic italics \newenvironment{Theorem}[1][]{% \ifthenelse{\not\equal{#1}{nopar}}{\smallskip\par#1}{}% \itshape}{\medskip\upshape\par} \newcommand{\Graphic}[1]{% \begin{center} \includegraphics[width=\textwidth]{./images/fig#1.pdf}% \end{center} } \newcommand{\Item}[1]{\vspace{4pt plus 16pt}\makebox[1em][r]{\textbf{#1}\ }} \newcommand{\Ax}[1]{\vspace{4pt plus 16pt}\makebox[3.5em][l]{Ax.\ #1}\ignorespaces} \newcommand{\Ans}[1]{% \hfil\allowbreak\null\nobreak\hfill\nobreak\mbox{#1 \textit{Ans.}}% } % Trailing words in displays \newcommand{\EqText}[1]{\rlap{\quad\text{#1}}} \newcommand{\First}[1]{\textsc{#1}} % For corrections. \newcommand{\DPtypo}[2]{#2} \newcommand{\Add}[1]{\DPtypo{}{#1}} % \PadTo[#1]{#2}{#3} sets #3 in a box of width #2, aligned at #1 (default [r]) % e.g., \PadTo{3x^{2} - 5x}{x} \newlength{\TmpLen} \newcommand{\PadTo}[3][r]{% \settowidth{\TmpLen}{$#2$}% \makebox[\TmpLen][#1]{$#3$}% } % Decorative rule \newcommand{\tb}[1][0.75in]{% \rule{#1}{0.5pt}\\ \medskip } % Common abbreviations \newcommand{\HCF}{H.\,C.\,F.} \newcommand{\LCM}{L.\,C.\,M.} \newcommand{\LCD}{L.\,C.\,D.} % For rectangular arrays illustrating multiplication \newcommand{\DOT}{\bullet} \newcommand{\NOT}{\bullet\llap{$/$}} % Miscellaneous alignment conveniences \newcommand{\Z}{\phantom{0}} \newcommand{\Neg}{\phantom{-}} % In-line "vertical sum" and vinculum \newcommand{\VSum}[2]{\begin{array}{r}#1\\[-4pt]+#2\end{array}\Big|} \newcommand{\Vinc}[1]{\overline{#1\strut}} % Table entries providing their own vertical bar (or not) \newcommand{\NoBar}[1]{\multicolumn{1}{@{}r}{#1}} \newcommand{\TbBar}[1]{\multicolumn{1}{@{}r|}{#1}} % Big brace, for table on 168.png \newcommand{\threelines}{\rule[-18pt]{0pt}{36pt}} \newcommand{\BB}{\makebox[2pt][r]{\smash{$\left.\threelines\right\}$}}} \DeclareUnicodeCharacter{00A3}{\pounds} \DeclareUnicodeCharacter{00B0}{{}^\circ} \DeclareUnicodeCharacter{00B1}{\pm} \DeclareUnicodeCharacter{00B7}{\cdot} \DeclareUnicodeCharacter{00D7}{\times} \DeclareUnicodeCharacter{00F7}{\div} % ToC formatting \AtBeginDocument{\renewcommand{\contentsname}% {\protect\centering\protect\Large CONTENTS.}} \newcommand{\TableofContents}{% \tableofcontents \SetRunningHeads{Contents.} \BookMark{0}{Contents.} } % Project-dependent logic \newcommand{\ToCLine}[2]{% \settowidth{\TmpLen}{\textsc{\footnotesize Chapter99}}% \ifthenelse{\equal{#1}{I.}}{% \noindent\textsc{\footnotesize Chapter\hfill Page}\\ }{}% \ifthenelse{\not\equal{#1}{}}{% \noindent\parbox[b]{\textwidth}{\strut\raggedright\hangindent\TmpLen% \makebox[\TmpLen][r]{#1\quad}\textsc{#2}\dotfill\pageref{chap:#1}% }% }{% \noindent\parbox[b]{\textwidth}{\strut\raggedright\hangindent\TmpLen% \makebox[\TmpLen][r]{#1\quad}\textsc{#2}\dotfill\pageref{answers}% }% } } %% Major document divisions %% \newcommand{\PGBoilerPlate}{% \pagenumbering{Alph} \pagestyle{empty} \BookMark{0}{PG Boilerplate.} } \newcommand{\FrontMatter}{% \cleardoublepage % pagestyle still empty; \Preface calls \pagestyle{fancy} \frontmatter \BookMark{-1}{Front Matter.} } \newcommand{\MainMatter}{% \FlushRunningHeads \mainmatter \BookMark{-1}{Main Matter.} } \newcommand{\BackMatter}{% \FlushRunningHeads \pagenumbering{Roman} \backmatter \BookMark{-1}{Back Matter.} \BookMark{0}{PG License.} \SetRunningHeads[License.]{License.} } \newcommand{\Tag}[1]{\tag*{#1}} % DPalign, DPgather \makeatletter \providecommand\shortintertext\intertext \newcount\DP@lign@no \newtoks\DP@lignb@dy \newif\ifDP@cr \newif\ifbr@ce \def\f@@zl@bar{\null} \def\addto@DPbody#1{\global\DP@lignb@dy\@xp{\the\DP@lignb@dy#1}} \def\parseb@dy#1{\ifx\f@@zl@bar#1\f@@zl@bar \addto@DPbody{{}}\let\@next\parseb@dy \else\ifx\end#1 \let\@next\process@DPb@dy \ifDP@cr\else\addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&}\fi \addto@DPbody{\end} \else\ifx\intertext#1 \def\@next{\eat@command0}% \else\ifx\shortintertext#1 \def\@next{\eat@command1}% \else\ifDP@cr\addto@DPbody{&\DP@lint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\DPh@@kl} \DP@crfalse\fi \ifx\begin#1\def\begin@stack{b} \let\@next\eat@environment \else\ifx\lintertext#1 \let\@next\linter@text \else\ifx\rintertext#1 \let\@next\rinter@text \else\ifx\\#1 \addto@DPbody{\DPh@@kr&\DP@rint}\@xp\addto@DPbody\@xp{\@xp{\the\DP@lign@no}&\\}\DP@crtrue \global\advance\DP@lign@no\@ne \let\@next\parse@cr \else\check@braces#1!Q!Q!Q!\ifbr@ce\addto@DPbody{{#1}}\else \addto@DPbody{#1}\fi \let\@next\parseb@dy \fi\fi\fi\fi\fi\fi\fi\fi\@next} \def\process@DPb@dy{\let\lintertext\@gobble\let\rintertext\@gobble \@xp\start@align\@xp\tw@\@xp\st@rredtrue\@xp\m@ne\the\DP@lignb@dy} \def\linter@text#1{\@xp\DPlint\@xp{\the\DP@lign@no}{#1}\parseb@dy} \def\rinter@text#1{\@xp\DPrint\@xp{\the\DP@lign@no}{#1}\parseb@dy} \def\DPlint#1#2{\@xp\def\csname DP@lint:#1\endcsname{\text{#2}}} \def\DPrint#1#2{\@xp\def\csname DP@rint:#1\endcsname{\text{#2}}} \def\DP@lint#1{\ifbalancedlrint\@xp\ifx\csname DP@lint:#1\endcsname\relax\phantom {\csname DP@rint:#1\endcsname}\else\csname DP@lint:#1\endcsname\fi \else\csname DP@lint:#1\endcsname\fi} \def\DP@rint#1{\ifbalancedlrint\@xp\ifx\csname DP@rint:#1\endcsname\relax\phantom {\csname DP@lint:#1\endcsname}\else\csname DP@rint:#1\endcsname\fi \else\csname DP@rint:#1\endcsname\fi} \def\eat@command#1#2{\ifcase#1\addto@DPbody{\intertext{#2}}\or \addto@DPbody{\shortintertext{#2}}\fi\DP@crtrue \global\advance\DP@lign@no\@ne\parseb@dy} \def\parse@cr{\new@ifnextchar*{\parse@crst}{\parse@crst{}}} \def\parse@crst#1{\addto@DPbody{#1}\new@ifnextchar[{\parse@crb}{\parseb@dy}} \def\parse@crb[#1]{\addto@DPbody{[#1]}\parseb@dy} \def\check@braces#1#2!Q!Q!Q!{\def\dp@lignt@stm@cro{#2}\ifx \empty\dp@lignt@stm@cro\br@cefalse\else\br@cetrue\fi} \def\eat@environment#1{\addto@DPbody{\begin{#1}}\begingroup \def\@currenvir{#1}\let\@next\digest@env\@next} \def\digest@env#1\end#2{% \edef\begin@stack{\push@begins#1\begin\end \@xp\@gobble\begin@stack}% \ifx\@empty\begin@stack \@checkend{#2} \endgroup\let\@next\parseb@dy\fi \addto@DPbody{#1\end{#2}} \@next} \def\lintertext{lint}\def\rintertext{rint} \newif\ifbalancedlrint \let\DPh@@kl\empty\let\DPh@@kr\empty \def\DPg@therl{&\omit\hfil$\displaystyle} \def\DPg@therr{$\hfil} \newenvironment{DPalign*}[1][a]{% \setlength{\abovedisplayskip}{8pt plus 4pt minus 6pt} \setlength{\belowdisplayskip}{8pt plus 4pt minus 6pt} \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi \global\DP@lign@no\z@\DP@crfalse \DP@lignb@dy{&\DP@lint0&}\parseb@dy }{% \endalign } \newenvironment{DPgather*}[1][a]{% \setlength{\abovedisplayskip}{8pt plus 4pt minus 6pt} \setlength{\belowdisplayskip}{8pt plus 4pt minus 6pt} \if m#1\balancedlrintfalse\else\balancedlrinttrue\fi \global\DP@lign@no\z@\DP@crfalse \let\DPh@@kl\DPg@therl \let\DPh@@kr\DPg@therr \DP@lignb@dy{&\DP@lint0&\DPh@@kl}\parseb@dy }{% \endalign } \makeatother %%%%%%%%%%%%%%%%%%%%%%%% START OF DOCUMENT %%%%%%%%%%%%%%%%%%%%%%%%%% \begin{document} %%%% PG BOILERPLATE %%%% \PGBoilerPlate \begin{center} \begin{minipage}{\textwidth} \small \begin{PGtext} The Project Gutenberg EBook of The First Steps in Algebra, by G. A. (George Albert) Wentworth This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the of the Project Gutenberg License included with this eBook or online at www.gutenberg.net Title: The First Steps in Algebra Author: G. A. (George Albert) Wentworth Release Date: July 9, 2011 [EBook #36670] Most recently updated: June 11, 2021 Language: English Character set encoding: UTF-8 *** START OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA *** \end{PGtext} \end{minipage} \end{center} \clearpage %%%% Credits and transcriber's note %%%% \begin{center} \begin{minipage}{\textwidth} \begin{PGtext} Produced by Andrew D. Hwang, Peter Vachuska, Chuck Greif and the Online Distributed Proofreading Team at http://www.pgdp.net. \end{PGtext} \end{minipage} \end{center} \vfill \begin{minipage}{0.85\textwidth} \small \BookMark{0}{Transcriber's Note} \subsection*{\centering\normalfont\scshape \normalsize\MakeLowercase{\TransNote}} \raggedright \TransNoteText \end{minipage} %%%%%%%%%%%%%%%%%%%%%%%%%%% FRONT MATTER %%%%%%%%%%%%%%%%%%%%%%%%%% \FrontMatter %% -----File: 001.png---Folio i------- \begin{center} \Large THE \vfill \textbf{\LARGE FIRST STEPS IN ALGEBRA.} \vfill \normalsize BY \\[12pt] \Large G. A. WENTWORTH, A.M. \\[12pt] \footnotesize AUTHOR OF A SERIES OF TEXT-BOOKS IN MATHEMATICS. \vfill\vfill \large BOSTON, U.S.A.: \\ PUBLISHED BY GINN \& COMPANY. \\ 1904. \end{center} %% -----File: 002.png---Folio ii------- \newpage \null\vfill \begin{center} \footnotesize Entered according to Act of Congress, in the year 1894, by \\[4pt] G. A. WENTWORTH, \\[4pt] in the Office of the Librarian of Congress, at Washington. \\[4pt] \tb \textsc{All Rights Reserved.} \vfill \textsc{Typography by J. S. Cushing \& Co., Boston, U.S.A.} \\ \tb[2.5in] \textsc{Presswork by Ginn \& Co., Boston, U.S.A.} \end{center} %% -----File: 003.png---Folio iii------- \Preface \First{This} book is written for pupils in the upper grades of grammar schools and the lower grades of high schools. The introduction of the simple elements of Algebra into these grades will, it is thought, so stimulate the mental activity of the pupils, that they will make considerable progress in Algebra without detriment to their progress in Arithmetic, even if no more time is allowed for the two studies than is usually given to Arithmetic alone. The great danger in preparing an Algebra for very young pupils is that the author, in endeavoring to smooth the path of the learner, will sacrifice much of the educational value of the study. To avoid this real and serious danger, and at the same time to gain the required simplicity, great care has been given to the explanations of the fundamental operations and rules, the arrangement of topics, the model solutions of examples, and the making of easy examples for the pupils to solve. Nearly all the examples throughout the book are new, and made expressly for beginners. The first chapter clears the way for quite a full treatment of simple integral equations with one unknown number. In the first two chapters only \emph{positive} numbers are %% -----File: 004.png---Folio iv------- involved, and the learner is led to see the practical advantages of Algebra in its most interesting applications before he faces the difficulties of negative numbers. The third chapter contains a simple explanation of negative numbers. The recognition of the facts that the real nature of subtraction is counting backwards, and that the real nature of multiplication is forming the product from the multiplicand precisely as the multiplier is formed from unity, makes an easy road to the laws of addition and subtraction of algebraic numbers, and to the law of signs in multiplication and division. All the principles and rules of this chapter are illustrated and enforced by numerous examples involving \emph{simple} algebraic expressions only. The ordinary processes with \emph{compound} expressions, including simple cases of resolution into factors, and the treatment of fractions, naturally follow the third chapter. The immediate succession of topics that require similar work is of the highest importance to the beginner, and it is hoped that the half-dozen chapters on algebraic expressions will prove interesting, and give sufficient readiness in the use of symbols. A chapter on fractional equations with one unknown number, a chapter on simultaneous equations with two unknown numbers, and a chapter on quadratics follow in order. Only one method of elimination is given in simultaneous equations and one method of completing the square in quadratics. Moreover, the solution of the examples in quadratics requires the square roots of only small numbers such as every pupil knows who has learned the %% -----File: 005.png---Folio v------- multiplication table. In each of these three chapters a considerable number of problems is given to \emph{state} and solve. By this means the learner is led to exercise his reasoning faculty, and to realize that the methods of Algebra require a strictly logical process. These problems, however, are divided into classes, and a model solution of an example of each class is given as a guide to the solution of other examples of that class. The course may end with the chapter on quadratics, but the simple questions of arithmetical progression and of geometrical progression are so interesting in themselves, and show so clearly the power of Algebra, that it will be a great loss not to take the short chapters on these series. The last chapter is on square and cube roots. It is expected that pupils who use this book will learn how to extract the square and cube roots by the simple formulas of Algebra, and be spared the necessity of committing to memory the long and tedious rules given in Arithmetic, rules that are generally forgotten in less time than they are learned. Any corrections or suggestions will be thankfully received by the author. A teachers' edition is in press, containing solutions of examples, and such suggestions as experience with beginners has shown to be valuable. \Signature{G\Add{.} A. WENTWORTH.} {\textsc{Exeter}, NH, April, 1894} %% -----File: 006.png---Folio vi------- \TableofContents \iffalse CONTENTS. Chapter Page I. Introduction.............. 1 II. Simple Equations............. 19 III. Positive and Negative Numbers....... 33 IV. Addition and Subtraction......... 46 V. Multiplication and Division........ 53 VI. Special Rules in Multiplication and Division . 64 VII. Factors............... 71 VIII. Common Factors and Multiples....... 84 IX. Fractions................ 89 X. Fractional Equations........... 103 XI. Simultaneous Equations of the First Degree . 122 XII. Quadratic Equations........... 132 XIII. Arithmetical Progression......... 142 XIV. Geometrical Progression.......... 148 XV. Square and Cube Roots.......... 152 Answers................ 165 \fi %% -----File: 007.png---Folio 1------- \MainMatter % FIRST STEPS IN ALGEBRA. % [** TN: Chapter macro prints preceding line] \Chapter{I.}{Introduction.} \begin{Remark}[\First{Note}\Add{.}] The principal definitions are put at the beginning of the book for convenient reference. They are not to be committed to memory. It is a good plan to have definitions and explanations read aloud in the class, and to encourage pupils to make comments upon them, and ask questions about them. \end{Remark} \Paragraph{1. Algebra.} Algebra, like Arithmetic, treats of numbers. \Paragraph{2. Units.} In counting separate objects or in measuring magnitudes, the \emph{standards} by which we count or measure are called \Defn{units}. \begin{Remark} Thus, in counting the boys in a school, the unit is a boy; in selling eggs by the dozen, the unit is a dozen eggs; in selling bricks by the thousand, the unit is a thousand bricks; in measuring short distances, the unit is an inch, a foot, or a yard; in measuring long distances, the unit is a rod or a mile. \end{Remark} \Paragraph{3. Numbers.} \emph{Repetitions of the unit} are expressed by numbers. \Paragraph{4. Quantities.} A number of specified units of any kind is called a quantity; as, $4$~pounds, $5$~oranges. \Paragraph{5. Number-Symbols in Arithmetic.} Arithmetic employs the arbitrary symbols, $1$,~$2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$,~$0$, called \Defn{figures}, to represent numbers. %% -----File: 008.png---Folio 2------- \Paragraph{6. Number-Symbols in Algebra.} Algebra employs \emph{the letters of the alphabet} in addition to the figures of Arithmetic to represent numbers. Letters are used as \emph{general} symbols of numbers to which \emph{any particular values} may be assigned. \Section{PRINCIPAL SIGNS OF OPERATIONS.} \Paragraph{7.} The signs of the fundamental operations are the same in Algebra as in Arithmetic. \Paragraph{8. The Sign of Addition,~$+$.} The sign~$+$ is read \emph{plus}. \begin{Remark} Thus, $4 + 3$, read $4$~plus~$3$, indicates that the number~$3$ is to be added to the number~$4$, $a + b$, read $a$~plus~$b$, indicates that the number~$b$ is to be added to the number~$a$. \end{Remark} \Paragraph{9. The Sign of Subtraction,~$-$\Add{.}} The sign~$-$ is read \emph{minus}. \begin{Remark} Thus, $4 - 3$, read $4$~minus~$3$, indicates that the number~$3$ is to be subtracted from the number~$4$, $a - b$, read $a$~minus~$b$, indicates that the number~$b$ is to be subtracted from the number~$a$. \end{Remark} \Paragraph{10. The Sign of Multiplication,~$×$\Add{.}} The sign~$×$ is read \emph{times}. \begin{Remark} Thus, $4 × 3$, read $4$~times~$3$, indicates that the number~$3$ is to be multiplied by~$4$, $a × b$, read $a$~times~$b$, indicates that the number~$b$ is to be multiplied by the number~$a$. \end{Remark} A dot is sometimes used for the sign of multiplication. Thus $2 · 3 · 4 · 5$ means the same as $2 × 3 × 4 × 5$. Either sign is read \emph{multiplied by} when followed by the multiplier. \$$a × b$, or \$$a · b$, is read $a$~dollars multiplied by~$b$. \Paragraph{11. The Sign of Division,~$÷$.} The sign~$÷$ is read \emph{divided by}. \begin{Remark} Thus, $4 ÷ 2$, read $4$~divided by~$2$, indicates that the number~$4$ is to be divided by~$2$, $a ÷ b$, read $a$~divided by~$b$, indicates that the number~$a$ is to be divided by the number~$b$. \end{Remark} %% -----File: 009.png---Folio 3------- Division is also indicated by writing the dividend above the divisor with a horizontal line between them. \begin{Remark} Thus, $\dfrac{4}{2}$ means the same as~$4 ÷ 2$; $\dfrac{a}{b}$~means the same as~$a ÷ b$. \end{Remark} \Section{OTHER SIGNS USED IN ALGEBRA.} \Paragraph{12. The Sign of Equality,~$=$.} The sign~$=$ is read \emph{is equal to}, when placed between two numbers and indicates that these two numbers are equal. \begin{Remark} Thus, $8 + 4 = 12$ means that $8 + 4$ and~$12$ stand for \emph{equal} numbers; $x + y = 20$ means that $x + y$ and~$20$ stand for equal numbers. \end{Remark} \Paragraph{13. The Sign of Inequality, $>$~or~$<$.} The sign $>$~or~$<$ is read \emph{is greater than} and \emph{is less than} respectively, and when placed between two numbers indicates that these two numbers are unequal, and that the number toward which the sign opens is the greater. \begin{Remark} Thus, $9 + 6 > 12$ means that $9 + 6$ is greater than~$12$; and $9 + 6 < 16$ means that $9 + 6$ is less than~$16$. \end{Remark} %[** TN: [sic] no punctuation after \therefore] \Paragraph{14. The Sign of Deduction,~$\therefore$}\quad The sign~$\therefore$ is read \emph{hence} or \emph{therefore}. \Paragraph{15. The Sign of Continuation,~$\dots$.} The sign~$\dots$ is read \emph{and so on}. \Paragraph{16. The Signs of Aggregation.} The signs of aggregation are the bar~$|$, the vinculum~$\overline{\phantom{a+x}}$, the parenthesis~$(\ )$, the bracket~$[\ ]$, and the brace~$\{\ \}$. \begin{Remark} Thus, each of the expressions $\VSum{a}{b}$, $\Vinc{a + b}$, $(a + b)$, $[a + b]$, $\{a + b\}$, signifies that $a + b$ is to be treated as a single number. \end{Remark} %% -----File: 010.png---Folio 4------- \Section{FACTORS. COEFFICIENTS. POWERS.} \Paragraph{17. Factors.} When a number consists of the product of two or more numbers, each of these numbers is called a \Defn{factor} of the product. The sign~$×$ is generally omitted between a figure and a letter, or between letters; thus, instead of $63 × a × b$, we write~$63ab$; instead of $a × b × c$, we write~$abc$. The expression~$abc$ must not be confounded with $a + b + c$. $abc$~is a product; $a + b + c$ is a sum. \begin{DPalign*} \lintertext{\indent If} a = 2,\quad b &= 3,\quad c = 4, \\ \lintertext{then} abc &= 2 × 3 × 4 = 24; \\ \lintertext{but} a + b + c &= 2 + 3 + 4 = 9. \end{DPalign*} \begin{Remark}[Note.] When a sign of operation is omitted in the notation of Arithmetic, it is always the \emph{sign of addition}; but when a sign of operation is omitted in the notation of Algebra, it is always the \emph{sign of multiplication}. Thus, $456$~means $400 + 50 + 6$, but $4ab$ means $4 × a × b$. \end{Remark} \Paragraph{18.} Factors expressed by letters are called \Defn{literal} factors; factors expressed by figures are called \Defn{numerical} factors. \Paragraph{19.} If one factor of a product is equal to~$0$, the product is equal to~$0$, whatever the values of the other factors. Such a factor is called a \Defn{zero factor}. \Paragraph{20. Coefficients.} A known factor of a product which is prefixed to another factor, to show the number of times that factor is taken, is called a \Defn{coefficient}. \begin{Remark} Thus, in~$7c$, $7$~is the coefficient of~$c$; in~$7ax$, $7$~is the coefficient of~$ax$, or, if $a$~is known, $7a$~is the coefficient of~$x$. \end{Remark} %% -----File: 011.png---Folio 5------- By coefficient, we generally mean the \textbf{numerical coefficient with its sign}. If no numerical coefficient is written, $1$~is understood. Thus, $ax$~means the same as~$1ax$. \Paragraph{21. Powers and Roots.} A product consisting of two or more \textbf{equal factors} is called a \Defn{power} of that factor, and one of the equal factors is called a \Defn{root} of the number. \begin{Remark} Thus, $9 = 3 × 3$; that is, $9$~is a power of~$3$, and $3$~is a root of~$9$. \end{Remark} \Paragraph{22. Indices or Exponents.} An index or exponent is a number-symbol written at the right of, and a little above, a number. If the index is a \emph{whole number}, it shows the number of times the given number is taken as a factor. \begin{Remark} Thus, $a^{1}$, or simply~$a$, denotes that $a$~is taken \emph{once} as a factor; $a^{2}$~denotes that $a$~is taken \emph{twice} as a factor; $a^{3}$~denotes that $a$~is taken \emph{three times} as a factor; and $a^{4}$~denotes that $a$~is taken \emph{four times} as a factor; and so on. These are read: the first power of~$a$; the second power of~$a$; the third power of~$a$; the fourth power of~$a$; and so on. $a^{3}$~is written instead of~$aaa$. $a^{4}$~is written instead of~$aaaa$. \end{Remark} \Paragraph{23.} The meaning of coefficient and exponent must be carefully distinguished. Thus, \begin{DPalign*} 4a &= a + a + a + a; \\ a^{4} &= a× a× a× a. \displaybreak[1] \\ \lintertext{\indent If $a = 3$,} 4a &= 3 + 3 + 3 + 3 = 12. \\ a^{4} &= 3 × 3 × 3 × 3 = 81. \end{DPalign*} \begin{Remark} The second power of a number is generally called the \emph{square} of that number; thus, $a^{2}$~is called the \emph{square} of~$a$, because if $a$~denotes the number of units of length in the side of a square, $a^{2}$~denotes the number of units of surface in the square. The third power of a number is generally called the \emph{cube} of that number; thus, $a^{3}$~is called the \emph{cube} of~$a$, because if $a$~denotes the number of units of length in the edge of a cube, $a^{3}$~denotes the number of units of volume in the cube. \end{Remark} %% -----File: 012.png---Folio 6------- \Section{ALGEBRAIC EXPRESSIONS.} \Paragraph{24. An Algebraic Expression.} An algebraic expression is a number written with algebraic symbols. An algebraic expression may consist of one symbol, or of several symbols connected by signs. \begin{Remark} Thus, $a$, $3abc$, $5a + 2b - 3c$, are algebraic expressions. \end{Remark} \Paragraph{25. .} A \Defn{term} is an algebraic expression, the parts of which are not separated by the sign $+$~or~$-$. \begin{Remark} Thus, $a$, $5xy$, $2ab × 4cd$, $\dfrac{3ab}{4cd}$ are algebraic expressions of one term each. A term may be separated into parts by the sign $×$~or~$÷$. \end{Remark} \Paragraph{26. Simple Expressions.} An algebraic expression of \emph{one term} is called a \Defn{simple expression} or \Defn{monomial}. \begin{Remark} Thus, $5xy$, $7a × 2b$, $7a ÷ 2b$, are simple expressions. \end{Remark} \Paragraph{27. Compound Expressions.} An algebraic expression of \emph{two or more } is called a \Defn{compound expression} or \Defn{polynomial}. \begin{Remark} Thus, $5xy + 7a$, $2x - y - 3z$, $4a - 3b + 2c - 3d$ are compound expressions. \end{Remark} \Paragraph{28.} A polynomial of two is called a \Defn{binomial}; of three , a \Defn{trinomial}. \begin{Remark} Thus, $3a - b$ is a binomial; and $3a - b + c$ is a trinomial. \end{Remark} \Paragraph{29. Positive and Negative .} The of a compound expression preceded by the sign~$+$ are called \Defn{positive }, and the preceded by the sign~$-$ are called \Defn{negative }. The sign~$+$ before the first term is omitted. \Paragraph{30.} A positive and a negative term of the same numerical value cancel each other when combined. %% -----File: 013.png---Folio 7------- \Paragraph{31. Like .} which have the same combination of \emph{letters} are called \Defn{like} or \Defn{similar} ; which do not have the same combination of letters are called \Defn{unlike} or \Defn{dissimilar} . \begin{Remark} Thus, $5a^{2}bc$, $-7a^{2}bc$, $a^{2}bc$, are like ; but $5a^{2}bc$, $5ab^{2}c$, $5abc^{2}$, are unlike . \end{Remark} \Paragraph{32. Degree of a Term.} A term that is the product of three letters is said to be of the \emph{third degree}; a term of four letters is of the \emph{fourth degree}; and so on. \begin{Remark} Thus, $5abc$~is of the third degree; $2a^{2}b^{2}c^{2}$, that is, $2aabbcc$, is of the sixth degree. \end{Remark} \Paragraph{33. Degree of a Compound Expression.} The degree of a compound expression is the degree of that term of the expression which is of the \emph{highest degree}. \begin{Remark} Thus, $a^{2}x^{2} + bx + c$ is of the fourth degree, since $a^{2}x^{2}$~is of the fourth degree. \end{Remark} \Paragraph{34. Dominant Letter.} It often happens that there is one letter in an expression of more importance than the rest, and this is, therefore, called the \Defn{dominant letter}. In such cases the degree of the expression is generally called by the degree of the \emph{dominant letter}. \begin{Remark} Thus, $a^{2}x^{2} + bx + c$ is of the \emph{second degree in~$x$}. \end{Remark} \Paragraph{35. Arrangement of a Compound Expression.} A compound expression is said to be \emph{arranged} according to the powers of some letter when the exponents of that letter, reckoning from left to right, either descend or ascend in \emph{the order of magnitude}. \begin{Remark} Thus, $3ax^{3} - 4bx^{2} - 6ax + 8b$ is arranged according to the descending powers of~$x$, and $8b - 6ax - 4bx^{2} + 3ax^{3}$ is arranged according to the ascending powers of~$x$. \end{Remark} %% -----File: 014.png---Folio 8------- \Section{PARENTHESES.} \Paragraph{36.} If a compound expression is to be treated as a whole, it is enclosed in a parenthesis. \begin{Remark} Thus, $2 × (10 + 5)$ means that we are to add $5$~to~$10$ and multiply the result by~$2$; if we were to omit the parenthesis and write $2 × 10 + 5$, the meaning would be that we were to multiply $10$~by~$2$ and add~$5$ to the result. \end{Remark} Like the parenthesis, we use with the same meaning any other sign of aggregation. \begin{Remark} Thus, $(5 + 2)$, $[5 + 2]$, $\{5 + 2\}$, $\Vinc{5 + 2}$, $\VSum{5}{2}$, all mean that the expression $5 + 2$ is to be treated as the single symbol~$7$. \end{Remark} \Paragraph{37. Parentheses preceded by~$+$.} If a man has $10$~dollars and afterwards collects $3$~dollars and then $2$~dollars, it makes no difference whether he adds the $3$~dollars to his $10$~dollars, and then the $2$~dollars, or puts the $3$~and~$2$ dollars together and adds their sum to his $10$~dollars. The first process is represented by $10 + 3 + 2$. The second process is represented by $10 + (3 + 2)$. \begin{DPgather*} \lintertext{\indent Hence,} 10 + (3 + 2) = 10 + 3 + 2. \Tag{(1)} \end{DPgather*} If a man has $10$~dollars and afterwards collects $3$~dollars and then pays a bill of $2$~dollars, it makes no difference whether he adds the $3$~dollars collected to his $10$~dollars and pays out of this sum his bill of $2$~dollars, or pays the $2$~dollars from the $3$~dollars collected and adds the remainder to his $10$~dollars. The first process is represented by $10 + 3 - 2$. The second process is represented by $10 + (3 - 2)$. \begin{DPgather*} \lintertext{\indent Hence,} 10 + (3 - 2) = 10 + 3 - 2. \Tag{(2)} \end{DPgather*} %% -----File: 015.png---Folio 9------- From (1)~and~(2) it follows that \begin{Theorem} If an expression within a parenthesis is preceded by the sign~$+$, the parenthesis can be removed without making any change in the signs of the expression. \end{Theorem} \begin{Theorem}[\textsc{Conversely.}] Any part of an expression can lie enclosed within a parenthesis and the sign~$+$ prefixed, without making any change in the signs of the thus enclosed. \end{Theorem} \Paragraph{38. Parentheses preceded by~$-$.} If a man has $10$~dollars and has to pay two bills, one of $3$~dollars and one of $2$~dollars, it makes no difference whether he takes $3$~dollars and $2$~dollars in succession, or takes the $3$~and~$2$ dollars at one time, from his $10$~dollars. The first process is represented by $10 - 3 - 2$. The second process is represented by $10 - (3 + 2)$. \begin{DPgather*} \lintertext{\indent Hence,} 10 - (3 + 2) = 10 - 3 - 2. \Tag{(3)} \end{DPgather*} If a man has $10$~dollars consisting of $2$~five-dollar bills, and has a debt of $3$~dollars to pay, he can pay his debt by giving a five-dollar bill and receiving $2$~dollars. This process is represented by $10 - 5 + 2$. Since the debt paid is $3$~dollars, that is, $(5 - 2)$~dollars, the number of dollars he has left can evidently be expressed by \begin{DPalign*} 10 &- (5 - 2). \\ \lintertext{\indent Hence,} 10 &- (5 - 2) = 10 - 5 + 2. \Tag{(4)} \end{DPalign*} From (3)~and~(4) it follows that \begin{Theorem} If an expression within a parenthesis is preceded by the sign~$-$, the parenthesis can be removed, provided the sign before each term within the parenthesis is changed, the sign~$+$ to~$-$, and the sign~$-$ to~$+$. \end{Theorem} %% -----File: 016.png---Folio 10------- \begin{Theorem}[\textsc{Conversely.}] Any part of an expression can be enclosed within a parenthesis and the sign~$-$ prefixed, provided the sign of each term enclosed is changed, the sign~$+$ to~$-$, and the sign~$-$ to~$+$. \end{Theorem} \Exercise{1.} Remove the parentheses, and combine: \begin{multicols}{2} \Item{1.} $9 + (3 + 2)$. \Item{2.} $9 + (3 - 2)$. \Item{3.} $7 + (5 + 1)$. \Item{4.} $7 + (5 - 1)$. \Item{5.} $6 + (4 + 3)$. \Item{6.} $6 + (4 - 3)$. \Item{7.} $3 + (8 - 2)$. \Item{8.} $9 - (8 - 6)$. \Item{9.} $10 - (9 - 5)$. \Item{10.} $9 - (6 + 1)$. \Item{11.} $8 - (3 + 2)$. \Item{12.} $7 - (3 - 2)$. \Item{13.} $9 - (4 + 3)$. \Item{14.} $9 - (4 - 3)$. \Item{15.} $7 - (5 - 2)$. \Item{16.} $7 - (7 - 3)$. \Item{17.} $(8 - 6) - 1$. \Item{18.} $(3 - 2) - (1 - 1)$. \Item{19.} $(7 - 3) - (3 - 2)$. \Item{20.} $(8 - 2) - (5 - 3)$. \Item{21.} $15 - (10 - 3 - 2)$. \end{multicols} \Paragraph{39. Multiplying a Compound Expression.} The expression $4(5 + 3)$ means that we are to take the sum of the numbers $5$~and~$3$ four times. The process can be represented by placing five dots in a line, and a little to the right three more dots in the same line, and then placing a second, third, and fourth line of dots underneath the first line and exactly similar to it. \[ \begin{array}{*{9}{>{\ }r}} \DOT & \DOT & \DOT & \DOT & \DOT & \quad & \DOT & \DOT & \DOT \\[-4pt] \DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt] \DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt] \DOT & \DOT & \DOT & \DOT & \DOT & & \DOT & \DOT & \DOT \\[-4pt] \end{array} \] There are $(5 + 3)$ dots in each line, and $4$~lines. The total number of dots, therefore, is $4 × (5 + 3)$. We see that in the left-hand group there are $4 × 5$ dots, and in the right-hand group $4 × 3$ dots. The sum of these %% -----File: 017.png---Folio 11------- two numbers $(4 × 5) + (4 × 3)$ must be equal to the total number; that is, \begin{align*} 4(5 + 3) &= (4 × 5) + (4 × 3) \\ &= 20 + 12. \end{align*} Again, the expression $4(8 - 3)$ means that we are to take the difference of the numbers $8$~and~$3$ four times. The process can be represented by placing eight dots in a line and crossing the last three, and then placing a second, third, and fourth line of dots underneath the first line and exactly similar to it. \[ %[** TN: Added gap between dot groups.] \begin{array}{*{9}{>{\ }r}} \DOT & \DOT & \DOT & \DOT & \DOT & \quad & \NOT & \NOT & \NOT \\[-4pt] \DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt] \DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt] \DOT & \DOT & \DOT & \DOT & \DOT & & \NOT & \NOT & \NOT \\[-4pt] \end{array} \] The whole number of dots not crossed in each line is evidently $(8 - 3)$, and the whole number of lines is~$4$. Therefore the total number of dots not crossed is \[ 4 × (8 - 3). \] The total number of dots (crossed and not crossed) is $(4 × 8)$, and the total number of dots crossed is~$(4 × 3)$. Therefore the total number of dots not crossed is \begin{DPalign*} (4 × 8) &- (4 × 3); \\ \lintertext{that is,} 4(8 - 3) &= (4 × 8) - (4 × 3) \\ &= 32 - 12. \displaybreak[1] \\ \intertext{\indent If $a$, $b$, and~$c$ stand for any three numbers, we have} a (b + c) &= ab + ac, \\ \lintertext{and} a(b - c) &= ab - ac. \EqText{Therefore,} \end{DPalign*} \Dictum{To multiply a compound expression by a simple one}, \begin{Theorem} Multiply each term by the multiplier, and write the successive products with the same signs as those of the original . \end{Theorem} %% -----File: 018.png---Folio 12------- \Exercise{2.} Multiply and remove parentheses: \begin{multicols}{3} \Item{1.} $7(8 + 5)$. \Item{2.} $7(8 - 5)$. \Item{3.} $6(7 + 3)$. \Item{4.} $6(7 - 3)$. \Item{5.} $8(7 + 5)$. \Item{6.} $8(7 - 5)$. \Item{7.} $9(6 - 2)$. \Item{8.} $4(a + b)$. \Item{9.} $4(a - b)$. \Item{10.} $2(a^{2} + b^{2})$. \Item{11.} $2(a^{2} - b^{2})$. \Item{12.} $3(ab + c)$. \Item{13.} $3(ab - c)$. \Item{14.} $3(c - ab)$. \Item{15.} $a(b + c)$. \Item{16.} $a(b - c)$. \Item{17.} $3a(b + c)$. \Item{18.} $3a(b - c)$. \Item{19.} $5a(b^{2} + c)$. \Item{20.} $5a(b^{2} - c^{2})$. \Item{21.} $5a^{2}(b^{2} - c)$. \end{multicols} \Paragraph{40.} The numerical value of an algebraic expression is the number obtained by putting for the letters involved the numbers for which these letters stand, and then performing the operations required by the signs. \Item{1.} If $b = 4$, find the value of~$3b^{2}$. \begin{Soln} \begin{DPgather*} \lintertext{\indent Here} 3b^{2} = 3 × 4^{2} = 3 × 16 = 48. \end{DPgather*} \end{Soln} \Item{2.} If $a = 7$, $b = 2$, $c = 3$, find the value of~$5ab^{2}c^{3}$. \begin{Soln} \begin{DPgather*} \lintertext{\indent Here} 5ab^{2}c^{3} = 5 × 7 × 2^{2} × 3^{3} = 3780. \end{DPgather*} \end{Soln} \Exercise{3.} If $a = 7$, $b = 5$, $c = 3$, find the value of \begin{multicols}{3} \Item{1.} $9a$. \Item{2.} $8ab$. \Item{3.} $4b^{2}c$. \Item{4.} $2a^{2}$. \Item{5.} $3c^{3}$. \Item{6.} $2b^{4}$. \Item{7.} $5ac$. \Item{8.} $abc$. \Item{9.} $abc^{2}$. \Item{10.} $\frac{1}{3}abc$. \Item{11.} $\frac{1}{5}ab^{2}c$. \Item{12.} $\frac{1}{7}a^{2}bc$. \end{multicols} If $a = 5$, $b = 2$, $c = 0$, $x = 1$, $y = 3$, find the value of \begin{multicols}{3} \Item{13.} $4acy^{2}$. \Item{14.} $3ax^{5}y^{2}$. \Item{15.} $2ab^{2}y$. \Item{16.} $2a^{2}b^{2}c^{2}y^{2}$. \Item{17.} $2a^{2}b^{2}x^{2}y^{2}$. \Item{18.} $2abx^{3}y^{3}$. \Item{19.} $3abcxy$. \Item{20.} $3abx^{3}y^{2}$. \Item{21.} $3ab^{2}xy^{2}$. \end{multicols} %% -----File: 019.png---Folio 13------- \Paragraph{41. The Numerical Value of a Compound Expression.} If $a$~stands for~$10$, $b$~for~$4$, and $c$~for~$3$, find the value of the expression $5ab - 10c^{2} - 5b^{2}$. Find the value of each term, and combine the results. \begin{Soln} \begin{gather*} \begin{alignedat}{3} 5ab &\text{ stands for } &5 × 10 &× 4 &&= 200; \\ 10c^{2} &\text{ stands for } & 10 &× 3^{2} &&= \Z90; \\ 5b^{2} &\text{ stands for } & 5 &× 4^{2} &&= \Z80. \end{alignedat} \\ \begin{aligned} &\therefore 5ab - 10c^{2} - 5b^{2} \\ &= 200 - 90 - 80 \\ &= 30. \end{aligned} \end{gather*} \end{Soln} \Paragraph{42.} In finding the value of a compound expression the operations indicated \emph{for each term} must be performed \emph{before} the operation indicated by the sign prefixed to the term. When there is no sign expressed between single symbols or between \emph{simple} and \emph{compound expressions}, it must be ed that the sign understood is the \emph{sign of multiplication}. Thus $2(a - b)$ has the same meaning as $2 × (a - b)$. \Exercise{4.} If $a = 5$, $b = 4$, $c = 3$, find the value of \begin{multicols}{2} \Item{1.} $9a - 2bc$. \Item{2.} $ab + 2c$. \Item{3.} $abc + bc$. \Item{4.} $5ac + 2a$. \Item{5.} $2abc - 2ac^{2}$. \Item{6.} $ab + bc - ac$. \Item{7.} $ac - (b + c)$. \Item{8.} $a^{2} + (b^{2} + c^{2})$\Add{.} \Item{9.} $2a + (2b + 2c)$. \Item{10.} $a^{2} - b^{2} - c^{2}$. \Item{11.} $3(a - b + c)$. \Item{12.} $6ab - (bc + 8)$. \Item{13.} $7bc - c^{2} + a$. \Item{14.} $5ac - b^{2} + 3b$. \Item{15.} $4b^{2}c - 5c^{2} - 2b$. \Item{16.} $2a + (b + c)$. \Item{17.} $b + 2(a - c)$. \Item{18.} $c + 2(a - b)$. \Item{19.} $2a - (b + c)$. \Item{20.} $2b - (a - c)$. \Item{21.} $2c - (a - b)$. \Item{22.} $2c - 5(a - b)$. \Item{23.} $2b - 3(a - c)$. \Item{24.} $2c - b(a - b)$. \end{multicols} %% -----File: 020.png---Folio 14------- \Section{ALGEBRAIC NOTATION.} \Exercise{5.} \Item{1.} Read $a + b$; $a - b$; $ab$; $a÷b$. \Item{2.} Write six increased by four. \Ans{$6 + 4$.} \Item{3.} Write $a$ increased by~$b$. \Item{4.} Write six diminished by four. \Ans{$6 - 4$.} \Item{5.} Write $a$ diminished by~$b$. \Item{6.} By how much does twenty-five exceed sixteen? \Ans{$25 - 16$.} \Item{7.} By how much does $x$ exceed~$y$? \Item{8.} Write four times three; the fourth power of three. \Ans{$4 × 3$; $3^{4}$.} \Item{9.} Write four times~$x$; the fourth power of~$x$. \Item{10.} If one part of twenty-five is fifteen, what is the other part? \Ans{$25 - 15$.} \Item{11.} If one part of~$35$ is~$x$, what is the other part? \Item{12.} If one part of~$x$ is~$a$, what is the other part? \Item{13.} How much does ten lack of being twelve? \Ans{$12 - 10$.} \Item{14.} How much does $x$ lack of being fourteen? \Item{15.} How much does $x$ lack of being~$a$? \Item{16.} If a man walks four miles an hour, how many miles will he walk in three hours? \Ans{$3 × 4$.} \Item{17.} If a man walks $y$~miles an hour, how many miles will he walk in $x$~hours? \Item{18.} If a man walks $y$~miles an hour, how many hours will it take him to walk $x$~miles? %% -----File: 021.png---Folio 15------- \Exercise{6.} \Item{1.} If the dividend is twenty and the quotient five, what is the divisor? \Ans{$\frac{20}{5}$.} \Item{2.} If the dividend is~$a$ and the quotient~$b$, what is the divisor? \Item{3.} If John is twenty years old to-day, how old was he four years ago? How old will he be five years hence? \Ans{$20 - 4$; $20 + 5$.} \Item{4.} If James is $x$~years old to-day, how old was he three years ago? How old will he be seven years hence? \Item{5.} Write four times the expression seven minus five. \Ans{$4(7 - 5)$.} \Item{6.} Write seven times the expression $2x$~minus~$y$. \Item{7.} Write the next integral number above four. \Ans{$4 + 1$.} \Item{8.} If $x$~is an integral number, write the next integral number above it; the next integral number below it. \Item{9.} What number is less than $20$ by~$d$? \Item{10.} If the difference of two numbers is five, and the smaller number is fifteen, what is the greater number? \Ans{$15 + 5$.} \Item{11.} If the difference of two numbers is eight, and the smaller number is~$x$, what is the greater number? \Item{12.} If the sum of two numbers is~$30$, and one of them is~$20$, what is the other? \Ans{$30 - 20$.} \Item{13.} If the sum of two numbers is~$x$, and one of them is~$10$, what is the other? \Item{14.} If $100$ contains~$x$ ten times, what is the value of~$x$? %% -----File: 022.png---Folio 16------- \Exercise{7.} \Item{1.} In $x$~years a man will be $40$~years old; what is his present age? \Item{2.} How old will a man be in $y$~years, if his present age is $a$~years? \Item{3.} What is the value of~$x$ if $7x$~equals~$28$? \Item{4.} If it takes $3$~men $4$~days to reap a field, how many days will it take one man to reap it? \Ans{$3 × 4$.} \Item{5.} If it takes $a$~men $b$~days to reap a field, how many days will it take one man to reap it? \Item{6.} What is the excess of~$5x$ over~$3x$? \Item{7.} By how much does $20 - 3$ exceed $(10 + 1)$? \Ans{$20 - 3 - (10 + 1)$.} \Item{8.} By how much does $2x - 3$ exceed $(x + 1)$? \Item{9.} If $x$~stands for~$10$, find the value of~$4(3x - 20)$. \Item{10.} If $a$~stands for~$10$, and $b$~for~$2$, find the value of $2(a - 2b)$. \Item{11.} How many cents in $a$~dollars, $b$~quarters, and $c$~dimes? \Item{12.} A book-shelf contains French, Latin, and Greek books. There are $100$~books in all, and there are $x$~Latin and $y$~Greek books. How many French books are there? \Item{13.} A regiment of men is drawn up in $10$~ranks of $80$~men each, and there are $15$~men over. How many men are there in the regiment? \Ans{$10 × 80 + 15$.} \Item{14.} A regiment of men is drawn up in $x$~ranks of $y$~men each, and there are $c$~men over. How many men are there in the regiment? %% -----File: 023.png---Folio 17------- \Exercise{8.} \Item{1.} A room is $10$~yards long and $8$~yards wide. In the middle there is a carpet $6$~yards square. How many square yards of oilcloth will be required to cover the rest of the floor? \Ans{$10 × 8 - 6^{2}$.} \Item{2.} A room is $x$~yards long and $y$~yards wide. In the middle there is a carpet $a$~yards square. How many square yards of oilcloth will be required to cover the rest of the floor? \Item{3.} How many rolls of paper $g$~feet long and $k$~feet wide will be required to paper a room, the perimeter of which, after proper allowance is made for doors and windows, is $p$~feet and the height $h$~feet? \Item{4.} Write six times the square of~$m$, plus five~$c$ times the expression $d$~plus $b$~minus~$a$. \Item{5.} Write five times the expression two~$n$ plus one, diminished by six times the expression $c$~minus $a$~plus~$b$. \Item{6.} A lady bought a dress for $a$~dollars, a cloak for $b$~dollars, two pairs of gloves for $c$~dollars a pair. She gave a hundred-dollar bill in payment. How much money should be returned to her? \Item{7.} If a man can perform a piece of work in $4$~days, how much of it can he do in one day? \Ans{$\frac{1}{4}$.} \Item{8.} If a man can perform a piece of work in $x$~days, how much of it can he do in one day? \Item{9.} If A~can do a piece of work in $x$~days, B~in $y$~days, C~in $z$~days, how much of it can they all do in one day, working together? \Item{10.} Write an expression for the sum, and also for the product, of three consecutive numbers of which the least is~$n$. %% -----File: 024.png---Folio 18------- \Item{11.} The product of two factors is~$36$; if one of the factors is~$x$, what is the other factor? \Item{12.} If $d$~is the divisor and $q$~the quotient, what is the dividend? \Item{13.} If $d$~is the divisor, $q$~the quotient, and $r$~the remainder, what is the dividend? \Item{14.} If $x$~oranges can be bought for $50$~cents, how many oranges can be bought for $100$~cents? \Item{15.} What is the price in cents of $x$~apples, if they are ten cents a dozen? \Item{16.} If $b$~oranges cost $6$~cents, what will $a$~oranges cost? \Item{17.} How many miles between two places, if a train travelling $m$~miles an hour requires $4$~hours to make the journey? \Item{18.} If a man was $x$~years old $10$~years ago, how many years old will he be $7$~years hence? \Item{19.} If a man was $x$~years old $y$~years ago, how many years old will he be $c$~years hence? \Item{20.} If a floor is $3x$~yards long and $12$~yards wide, how many square yards does the floor contain? \Item{21.} How many hours will it take to walk $c$~miles, at the rate of one mile in $15$~minutes? \Item{22.} Write three consecutive numbers of which $x$~is the middle number. \Item{23.} If an odd number is represented by~$2n + 1$, what will represent the next odd number? %% -----File: 025.png---Folio 19------- \Chapter{II.}{Simple Equations.} \Paragraph{43. Equations.} An equation is a statement in symbols that two expressions stand for the same number. \begin{Remark} Thus, the equation $3x + 2 = 8$ states that $3x + 2$ and~$8$ stand for the same number. \end{Remark} \Paragraph{44.} That part of the equation which precedes the sign of equality is called the \Defn{first member}, or \Defn{left side}, and that which follows the sign of equality is called the \Defn{second member}, or \Defn{right side}. \Paragraph{45.} The statement of equality between two algebraic expressions, if true for all values of the letters involved, is called an \Defn{identical equation}; but if true only for certain particular values of the letters involved, it is called an \Defn{equation of condition}. \begin{Remark} Thus, $a + b = b + a$, which is true for \emph{all values} of $a$~and~$b$, is an \emph{identical equation}, and $3x + 2 = 8$, which is true only when $x$~stands for~$2$, is an \emph{equation of condition}\Add{.} \end{Remark} For brevity, an identical equation is called an \Defn{identity}, and an equation of condition is called simply an \Defn{equation}. \Paragraph{46.} We often employ an equation to discover an \emph{unknown number} from its relation to known numbers. We usually represent the unknown number by one of the \emph{last} letters of the alphabet, as $x$,~$y$,~$z$; and by way of distinction, we use the \emph{first} letters, $a$,~$b$, $c$,~etc., to represent numbers that %% -----File: 026.png---Folio 20------- are supposed to be known, though not expressed in the number-symbols of Arithmetic. \begin{Remark} Thus, in the equation $ax + b = c$, $x$~is supposed to represent an unknown number, and $a$,~$b$, and~$c$ are supposed to represent known numbers. \end{Remark} \Paragraph{47. Simple Equations.} An equation which contains the first power of~$x$, the symbol for the unknown number, and no higher power, is called a \Defn{simple equation}, or an \Defn{equation of the first degree}. \begin{Remark} Thus, $ax + b = c$ is a simple equation, or an equation of the first degree \emph{in~$x$}. \end{Remark} \Paragraph{48. Solution of an Equation.} To solve an equation is to find the unknown number; that is, the number which, when substituted for its symbol in the given equation, renders the equation an identity. This number is said to \emph{satisfy} the equation, and is called the \Defn{root} of the equation. \Paragraph{49. Axioms.} In solving an equation, we make use of the following axioms: \Ax{1.} If equal numbers be added to equal numbers, the sums will be equal. \Ax{2.} If equal numbers be subtracted from equal numbers, the remainders will be equal. \Ax{3.} If equal numbers be multiplied by equal numbers, the products will be equal. \Ax{4.} If equal numbers be divided by equal numbers, the quotients will be equal. \begin{Theorem} If, therefore, the two sides of an equation be increased by, diminished by, multiplied by, or divided by equal numbers, the results will be equal. \end{Theorem} %[** TN: Next paragraph set in normal-size type in the original] \begin{Remark} Thus, if $8x = 24$, then $8x + 4 = 24 + 4$, $8x - 4 = 24 - 4$, $4 × 8x = 4 × 24$, and $8x ÷ 4 = 24 ÷ 4$. \end{Remark} %% -----File: 027.png---Folio 21------- \Paragraph{50. Transposition of .} It becomes necessary in solving an equation to bring all the that contain the symbol for the unknown number to one side of the equation, and all the other to the other side. This is called \Defn{transposing the }. We will illustrate by examples: \Item{1.} Find the number for which $x$~stands when \[ 14x - 11 = 5x + 70. \] The first object to be attained is to get all the which contain~$x$ on the left side of the equation, and all the other on the right side. This can be done by first subtracting~$5x$ from both sides (Ax.~2), which gives \[ 9x - 11 = 70, \] and then adding~$11$ to these equals (Ax.~1), which gives \begin{DPalign*} 9x + 11 - 11 &= 70 + 11. \\ \lintertext{\indent Combine,} 9x &= 81. \\ \lintertext{\indent Divide by~$9$,} x &= 9. \end{DPalign*} \Item{2.} Find the number for which $x$~stands when $x + b = a$. \begin{DPalign*}[m] \lintertext{\indent The equation is} x + b &= a. \\ \lintertext{\indent Subtract~$b$ from each side,} x + b - b &= a - b. \rintertext{(Ax.~2)} \end{DPalign*} Since $+b$~and~$-b$ in the left side cancel each other (§~30), we have $x = a - b$. \Item{3.} Find the number for which $x$~stands when $x - b = a$. \begin{DPalign*} \lintertext{\indent The equation is} x - b &= a. \\ \lintertext{Add $+b$ to each side,} x + b - b &= a + b. \rintertext{(Ax.~1)} \end{DPalign*} Since $+b$~and~$-b$ in the left side cancel each other (§~30), we have $x = a + b$. %% -----File: 028.png---Folio 22------- \Paragraph{51.} The effect of the operation in the preceding equations, when Axioms (1)~and~(2) are used, is to take a term from one side and put it on the other side with its sign changed. We can proceed in a like manner in any other case. Hence the general rule: \Paragraph{52.} \begin{Theorem}[nopar] Any term may be transposed from one side of an equation to the other, provided its sign is changed. \end{Theorem} \Paragraph{53.} Any term, therefore, which occurs on both sides with \emph{the same sign} may be removed from both without affecting the equality; and the sign of every term of an equation may be changed without affecting the equality. \Paragraph{54. Verification.} When the root is substituted for its symbol in the given equation, and the equation reduces to an \emph{identity}, the root is said to be \Defn{verified}. We will illustrate by examples: \Item{1.} What number added to twice itself gives~$24$? Let $x$~stand for the number; \\ then $2x$~will stand for twice the number, \\ and the number added to twice itself will be $x + 2x$. But the number added to twice itself is~$24$. \begin{DPalign*} \therefore x + 2x &= 24. \\ \lintertext{\indent Combine $x$~and~$2x$,} 3x &= 24. \\ \intertext{\indent Divide by~$3$, the coefficient of~$x$,} x &= 8. \rintertext{(Ax.~4)} \end{DPalign*} Therefore the required number is~$8$. \begin{DPalign*} \lintertext{\indent\textsc{Verification.}} x + 2x &= 24, \\ 8 + 2 × 8 &= 24, \\ 8 + 16 &= 24, \\ 24 &= 24. \end{DPalign*} %% -----File: 029.png---Folio 23------- \ScreenBreak \Item{2.} If $4x - 5$ stands for~$19$, for what number does $x$~stand? We have the equation \begin{DPalign*} 4x - 5 &= 19. \\ \lintertext{\indent Transpose $-5$,} 4x &= 19 + 5. \\ \lintertext{\indent Combine,} 4x &= 24. \\ \lintertext{\indent Divide by~$4$,} x &= 6. \rintertext{(Ax.~4)} \displaybreak[1] \\ \lintertext{\indent \textsc{Verification.}} 4x - 5 &= 19, \\ 4 × 6 - 5 &= 19, \\ 24 - 5 &= 19, \\ 19 &= 19. \end{DPalign*} \Item{3.} If $3x - 7$ stands for the same number as $14 - 4x$, what number does $x$~stand for? We have the equation \[ 3x - 7 = 14 - 4x. \] Transpose $-4x$ to the left side, and $-7$ to the right side, \begin{DPalign*} 3x + 4x &= 14 + 7. \\ \lintertext{\indent Combine,} 7x &= 21. \\ \lintertext{\indent Divide by~$7$,} x &= 3. \displaybreak[1] \\ \lintertext{\indent \textsc{Verification.}} 3x - 7 &= 14 - 4x, \\ 3 × 3 - 7 &= 14 - 4 × 3, \\ 2 &= 2. \end{DPalign*} \Item{4.} Solve the equation \[ 7(x - 1) - 30 = 4(x - 4). \] We have the equation \[ 7(x - 1) - 30 = 4(x - 4). \] %% -----File: 030.png---Folio 24------- %[** TN: Equation repeated at page break in the original] % 7(x - 1) - 30 = 4(x - 4). Remove the parentheses, \begin{DPalign*} 7x - 7 - 30 &= 4x - 16. \\ \lintertext{\indent Then} 7x - 4x &= 7 + 30 - 16. \\ \lintertext{\indent Combine,} 3x &= 21. \\ \lintertext{\indent Divide by~$3$,} x &= 7. \displaybreak[1] \\ \lintertext{\indent \textsc{Verification.}} 7(7 - 1) - 30 &= 4(7 - 4), \\ 7 × 6 - 30 &= 4 x 3, \\ 42 - 30 &= 12, \\ 12 &= 12. \end{DPalign*} \Exercise{9.} Find the number that $x$~stands for, if: \begin{multicols}{2} \Item{1.} $3x = x + 8$. \Item{2.} $3x = 2x + 5$. \Item{3.} $3x + 4 = x + 10$. \Item{4.} $4x + 6 = x + 9$. \Item{5.} $7x - 19 = 5x + 7$. \Item{6.} $3(x - 2) = 2(x - 3)$. \Item{7.} $8x + 7 = 4x + 27$. \Item{8.} $3x + 10 = x + 20$. \Item{9.} $5(x - 2) = 3x + 4$. \Item{10.} $3(x - 2) = 2(x - 1)$. \Item{11.} $2x + 3 = 16 - (2x - 3)$. \Item{12.} $19x - 3 = 2(7 + x)$. \Item{13.} $7x - 70 = 5x - 20$. \Item{14.} $2x - 22 = 108 - 2x$. \Item{15.} $2(x + 5) + 5(x - 4) = 32$. \Item{16.} $2(3x - 25) = 10$. \Item{17.} $33x - 70 = 3x + 20$. \Item{18.} $4(1 + x) + 3(2 + x) = 17$. \Item{19.} $8x - (x + 2) = 47$. \Item{20.} $3(x - 2) = 50 - (2x - 9)$. \end{multicols} %% -----File: 031.png---Folio 25------- \Item{21.} $2x - (3 + 4x - 3x + 5) = 4$. \Item{22.} $5(2 - x) + 7x - 21 = x + 3$. \Item{23.} $3(x - 2) + 2(x - 3) + (x - 4) = 3x + 5$. \Item{24.} $x + 1 + x + 2 + x + 4 = 2x + 12$. \Item{25.} $(2x - 5) - (x - 4) + (x - 3) = x - 4$. \Item{26.} $4 - 5x - (1 - 8x) = 63 - x$. \Item{27.} $3x - (x + 10) - (x - 3) = 14 - x$. \Item{28.} $x^{2} - 2x - 3 = x^{2} - 3x + 1$. \Item{29.} $(x^{2} - 9) - (x^{2} - 16) + x = 10$. \Item{30.} $x^{2} + 8x - (x^{2} - x - 2) = 5(x + 3) + 3$. \Item{31.} $x^{2} + x - 2 + x^{2} + 2x - 3 = 2x^{2} - 7x - 1$. \Item{32.} $10x - (x - 5) = 2x + 47$. \Item{33.} $7x - 5 - (6 - 8x) + 2 = 3x - 7 + 106$. \Item{34.} $6x + 3 - (3x + 2) = (2x - 1) + 9$. \Item{35.} $3(x + 10) + 4(x + 20) + 5x - 170 = 15 - 3x$. \Item{36.} $20 - x + 4(x - 1) - (x - 2) = 30$. \Item{37.} $5x + 3 - (2x - 2) + (1 - x) = 6(9 - x)$. \Paragraph{55. Statement and Solution of Problems.} The difficulties which the beginner usually meets in stating problems will be quickly overcome if he will observe the following directions: Study the problem until you clearly understand its meaning and just what is required to be found. that $x$~must not be put for money, length, time, weight,~etc., but for the \textbf{required number} of \emph{specified units} of money, length, time, weight,~etc. Express each statement carefully in algebraic language, and write out in full just what each expression stands for. %% -----File: 032.png---Folio 26------- Do not attempt to form the equation until all the statements are made in symbols. We will illustrate by examples: \Item{1.} John has three times as many oranges as James, and they together have~$32$. How many has each? \begin{Soln} \begin{DPgather*} \lintertext{\indent Let} \text{$x$~stand for the \emph{number} of oranges James has;} \\ \lintertext{then} \text{$3x$~is the number of oranges John has;} \\ \lintertext{and} \text{$x + 3x$ is the number of oranges they together have.} \end{DPgather*} But $32$~is the number of oranges they together have. \begin{DPalign*} \therefore x + 3x &= 32; \\ \lintertext{or,} 4x &= 32, \\ \lintertext{and} x &= 8. \\ \lintertext{\indent Since $x = 8$,} 3x &= 24. \end{DPalign*} \end{Soln} Therefore James has $8$~oranges, and John has $24$~oranges. \begin{Remark}[Note.] Beginners in stating the preceding problem generally write: \[ \text{Let $x = {}$\emph{what} James had.} \] Now, we know \emph{what} James had. He had oranges, and we are to discover simply the \emph{number} of oranges he had. \end{Remark} \Item{2.} James and John together have~\$$24$, and James has \$$8$~more than John. How many dollars has each? \begin{Soln} \begin{DPgather*} \lintertext{\indent Let} \text{$x$~stand for the number of dollars John has;} \\ \lintertext{then} \text{$x + 8$ is the number of dollars James has;} \\ \lintertext{and} \text{$x + (x + 8)$ is the number of dollars they both have.} \end{DPgather*} But $24$~is the number of dollars they both have. \[ \therefore x + (x + 8) = 24. \] Removing the parenthesis, \[ x + x + 8 = 24. \] \begin{DPalign*} \therefore 2x &= 16. \\ \lintertext{\indent Dividing by~$2$,} x &= 8. \\ \lintertext{\indent Since $x = 8$,} x + 8 &= 16. \end{DPalign*} \end{Soln} Therefore John has~\$$8$, and James has~\$$16$. %% -----File: 033.png---Folio 27------- \begin{Remark}[Note\Add{.}] The beginner must avoid the mistake of writing \[ \text{Let $x = {}$John's money\Add{.}} \] We are required to find the \emph{number} of dollars John has, and therefore $x$~must represent this required number. \end{Remark} \Item{3.} The sum of two numbers is~$18$, and three times the greater number exceeds four times the less by~$5$. Find the numbers. \begin{Soln} Let $x = {}$the greater number. Then, since $18$~is the sum and $x$~is one of the numbers, the other number must be the sum minus~$x$. Hence \[ 18 - x = \text{the smaller number}\Add{.} \] Now, three times the greater number is~$3x$, and four times the less number is~$4(18 - x)$\Add{.} \begin{DPalign*} \lintertext{\indent Hence,} &3x - 4(18 - x) = \text{the excess}\Add{.} \\ \lintertext{\indent But} &5 = \text{the excess}\Add{,} \\ \therefore\ &3x - 4(18 - x) = 5 \\ \therefore\ &3x - (72 - 4x) = 5, \\ \lintertext{or} &3x - 72 + 4x = 5. \\ \therefore\ &7x = 77, \\ \lintertext{and} &\Z x = 11\Add{.} \end{DPalign*} \end{Soln} Therefore the numbers are $11$~and~$7$. \Exercise{10.} \Item{1.} If a number is multiplied by~$9$, the product is~$270$. Find the number. \Item{2.} If the sum of the ages of a father and son is $60$~years, and the father is $5$~times as old as the son, what is the age of each? \Item{3.} The sum of two numbers is~$91$, and the greater is $6$~times the less. Find the numbers. %% -----File: 034.png---Folio 28------- \Item{4.} A tree $90$~feet high was broken so that the part broken off was $8$~times the length of the part left standing. Find the length of each part. \Item{5.} The difference of two numbers is~$7$, and their sum is~$53$. Find the numbers. \Item{6.} The difference of two numbers is~$12$, and their sum is~$84$. Find the numbers. \Item{7.} Divide $35$ into two parts so that one part shall be greater by~$5$ than the other part. \Item{8.} Three times a given number is equal to the number increased by~$40$. Find the number. \Item{9.} Three times a given number diminished by~$24$ is equal to the given number. Find the number. \Item{10.} One number is $4$~times another, and their difference is~$30$. Find the numbers. \Item{11.} The sum of two numbers is~$36$, and one of them exceeds twice the other by~$6$. Find the numbers. \begin{Remark}[Hint.] Let $x$~equal the greater number: then $36 - x$ will equal the smaller. \end{Remark} \Item{12.} The sum of two numbers is~$40$, and $5$~times the smaller exceeds $2$~times the greater by~$25$. Find the numbers. \Item{13.} The number $30$ is divided into two parts such that $4$~times the greater part exceeds $5$~times the smaller part by~$30$. Find the parts. \Item{14.} The sum of two numbers is~$27$, and twice the greater number increased by $3$~times the less is~$61$. Find the numbers. \Item{15.} The sum of two numbers is~$32$, and five times the smaller is $3$~times the greater number. Find the numbers. %% -----File: 035.png---Folio 29------- \Exercise{11.} \Item{1.} A farmer sold a horse and a cow for~\$$210$. He sold the horse for four times as much as the cow. How much did he get for each? \Item{2.} Three times the excess of a certain number over~$6$ is equal to the number plus~$144$. Find the number. \Item{3.} Thirty-one times a certain number is as much above~$40$ as nine times the number is below~$40$. Find the number. \Item{4.} Two numbers differ by~$10$, and their sum is equal to seven times their difference. Find the numbers. \Item{5.} Find three consecutive numbers, $x$, $x + 1$, and~$x + 2$, whose sum is~$78$. \Item{6.} Find five consecutive numbers whose sum is~$35$. \Item{7.} The sum of the ages of A~and~B is $40$~years, and $10$~years hence A~will be twice as old as~B\@. Find their present ages. \Item{8.} A father is four times as old as his son, and in $5$~years he will be only three times as old. Find their present ages. \Item{9.} One man is $60$~years old, and another man is $50$~years. How many years ago was the first man twice as old as the second? \Item{10.} A man $50$~years old has a son $10$~years old. In how many years will the father be three times as old as the son? \Item{11.} A~has~\$$100$, and B~has~\$$20$. How much must A give B in order that they may each have the same sum? \Item{12.} A banker paid \$$63$ in $5$-dollar bills and $2$-dollar bills. He paid just as many $5$-dollar bills as $2$-dollar bills. How many bills of each kind did he pay? %% -----File: 036.png---Folio 30------- \Exercise{12.} \Item{1.} In a company of $90$~persons, composed of men, women, and children, there are three times as many children as men, and twice as many women as men. How many are there of each? \Item{2.} Find the number whose double exceeds~$70$ by as much as the number itself is less than~$80$. \Item{3.} A farmer employed two men to build $112$~rods of wall. One of them built on the average $4$~rods a day, and the other $3$~rods a day. How many days did they work? \Item{4.} Two men travel in \emph{opposite} directions, one $30$~miles a day, and the other $20$~miles a day. In how many days will they be $350$~miles apart? \Item{5.} Two men travel in the same direction, one $30$~miles a day, and the other $20$~miles a day. In how many days will they be $350$~miles apart? \Item{6.} A man bought $3$~equal lots of hay for~\$$408$. For the first lot he gave \$$17$~a ton, for the second~\$$16$, for the third~\$$18$. How many tons did he buy in all? \Item{7.} A farmer sold a quantity of wood for~\$$84$, one half of it at \$$3$~a cord, and the other half at \$$4$~a cord. How many cords did he sell? \begin{Remark}[Hint.] Let $2x$~equal the number of cords. \end{Remark} \Item{8.} If $2x - 3$ stands for~$29$, for what number will $4 + x$ stand? \Item{9.} At an election two opposing candidates received together $2044$~votes, and one received $104$~more votes than the other. How many votes did each candidate receive? %% -----File: 037.png---Folio 31------- \Exercise{13.} \Item{1.} A man walks $4$~miles an hour for $x$~hours, and another man walks $3$~miles an hour for $x + 2$~hours. If they each walk the same distance, how many miles does each walk? \Item{2.} A has twice as much money as~B; but if A gives~B \$$30$, it will take twice as much as A has left to equal~B's. How much money has each? \Item{3.} I have \$$12.75$ in two-dollar bills and twenty-five cent pieces, and I have twice as many bills as twenty-five cent pieces. How many have I of each? \Item{4.} I have in mind a certain number. If this number is diminished by~$8$ and the remainder multiplied by~$8$, the result is the same as if the number was diminished by~$6$ and the remainder multiplied by~$6$. What is the number? \Item{5.} I have five times as many half-dollars as quarters, and the half-dollars and quarters amount to~\$$11$. How many of each have I? \Item{6.} A man pays a debt of~\$$91$ with ten-dollar bills and one-dollar bills, paying three times as many one-dollar bills as ten-dollar bills. How many bills of each kind does he pay? \Item{7.} A father is four times as old as his son, but $4$~years hence he will be only three times as old as his son. How old is each? \Item{8.} A workman was employed for $24$~days. For every day he worked he was to receive~\$$1.50$, and for every day he was idle he was to pay \$$0.50$ for his board. At the end of the time he received~\$$28$. How many days did he work? %% -----File: 038.png---Folio 32------- \Exercise{14.} \Item{1.} A boy has $4$~hours at his disposal. How far can he ride into the country at the rate of $9$~miles an hour and walk back at the rate of $3$~miles an hour, if he returns just on time? \begin{Remark}[Hint.] Let $x = {}$the number of hours he rides. Then $4 - x = {}$the number he walks. \end{Remark} \Item{2.} A has~\$$180$, and B has~\$$80$. How much must A give B in order that six times B's money shall be equal to $7$~times~A's? \Item{3.} A grocer has two kinds of tea, one kind worth $45$~cents a pound, and the other worth $65$~cents a pound. How many pounds of each kind must he take to make $80$~pounds, worth $50$~cents a pound? \Item{4.} A tank holding $1200$~gallons has three pipes. The first lets in $8$~gallons a minute, the second $10$~gallons, and the third $12$~gallons a minute. In how many minutes will the tank be filled? \Item{5.} The fore and hind wheels of a carriage are $10$~feet and $12$~feet respectively in circumference. How many feet will the carriage have ed over when the fore wheel has made $250$~revolutions more than the hind wheel? \Item{6.} Divide a yard of tape into two parts so that one part shall be $6$~inches longer than the other part. \Item{7.} A boy bought $7$~dozen oranges for~\$$1.50$. For a part he paid $20$~cents a dozen; and for the remainder, $25$~cents a dozen. How many dozen of each kind did he buy? \Item{8.} How can a bill of~\$$3.30$ be paid in quarters and ten-cent pieces so as to pay three times as many ten-cent pieces as quarters? %% -----File: 039.png---Folio 33------- \Chapter{III.}{Positive and Negative Numbers.} \Paragraph{56. Quantities Opposite in Kind.} If a person is engaged in trade, his capital will be \emph{increased} by his \emph{gains}, and \emph{diminished} by his \emph{losses}. \emph{Increase} in temperature is measured by the number of degrees the mercury rises in a thermometer, and \emph{decrease} in temperature by the number of degrees the mercury \emph{falls}. In considering any quantity whatever, a quantity that \emph{increases} the quantity considered is called a \emph{positive quantity}; and a quantity that \emph{decreases} the quantity considered is called a \emph{negative quantity}. \Paragraph{57. Positive and Negative Numbers.} If from a given point, marked~$0$, we draw a straight line to the right, and beginning from the \emph{zero} point lay off units of length on this line, the successive repetitions of the unit will be expressed by the \emph{natural series of numbers}, $1$,~$2$, $3$, $4$,~etc. Thus: \Graphic{1} If we wish to \emph{add} $2$~to~$5$, we begin at~$5$, count $2$~units \emph{forwards}, and arrive at~$7$, the sum required. If we wish to \emph{subtract} $2$~from~$5$, we begin at~$5$, count $2$~units \emph{backwards}, and arrive at~$3$, the difference required. If we wish to subtract $5$~from~$5$, we count $5$~units backwards, and arrive at~$0$. If we wish to subtract $5$~from~$2$, we cannot do it, because when we have counted backwards from~$2$ as far as~$0$, \emph{the natural series of numbers comes to an end}. %% -----File: 040.png---Folio 34------- In order to subtract a greater number from a smaller, it is necessary to \emph{assume} a new series of numbers, beginning at zero and extending to the left of zero. The series to the left of zero must proceed from zero by \emph{the repetitions of the unit}, precisely like the natural series to the right of zero; and the \emph{opposition} between the right-hand series and the left-hand series must be clearly marked. This opposition is indicated by calling every number in the right-hand series a \Defn{positive number}, and prefixing to it, when written, the sign~$+$; and by calling every number in the left-hand series a \Defn{negative number}, and prefixing to it the sign~$-$. The two series of numbers may be called the \Defn{algebraic series of numbers}, and written thus: \Graphic{2} If, now, we wish to subtract $7$~from~$4$, we begin at~$4$ in the positive series, count $7$~units in the \emph{negative direction} (to the left), and arrive at~$-3$ in the negative series; that is, $4 - 7 = -3$. The result obtained by subtracting a greater number from a less, when both are positive, is \emph{always a negative number}. In general, if $a$~and~$b$ represent any two numbers of the positive series, the expression $a - b$ will be a positive number when $a$~is greater than~$b$; will be zero when $a$~is equal to~$b$; will be a negative number when $a$~is less than~$b$. In counting from left to right in the algebraic series, numbers \emph{increase} in magnitude; in counting from right to left, numbers \emph{decrease} in magnitude. Thus $-3$,~$-1$, $0$, $+2$,~$+4$, are arranged in \emph{ascending} order of magnitude. \Paragraph{58.} Every algebraic number, as $+4$~or~$-4$, consists of a \emph{sign} $+$~or~$-$ and the \emph{absolute value} of the number. The sign shows whether the number belongs to the positive or %% -----File: 041.png---Folio 35------- negative series of numbers; the absolute value shows the place the number has in the positive or negative series. When no sign stands before a number, the sign~$+$ is always understood. Thus $4$~means the same as~$+4$, $a$~means the same as~$+a$. But \emph{the sign~$-$ is never omitted}. \Paragraph{59.} Two algebraic numbers which have, one the sign~$+$, and the other the sign~$-$, are said to have \emph{unlike signs}. Two algebraic numbers which have the same absolute values, but unlike signs, always cancel each other when combined. Thus $+4 - 4 = 0$; $+a - a = 0$. \Paragraph{60. Double Meanings of the Signs $+$~and~$-$.} The use of the signs $+$~and~$-$ to indicate addition and subtraction must be carefully distinguished from the use of the signs $+$~and~$-$ to indicate in which series, the positive or the negative, a given number belongs. In the first sense they are signs of \emph{operations}, and are common to Arithmetic and Algebra; in the second sense they are signs of \emph{opposition}, and are employed in Algebra alone. \begin{Remark}[Note.] In Arithmetic, if the things counted are \emph{whole units}, the numbers which count them are called \Defn{whole numbers}, \Defn{integral numbers}, or \Defn{integers}, where the adjective is transferred from the things counted to the numbers which count them. But if the things counted are only \emph{parts of units}, the numbers which count them are called \Defn{fractional numbers}, or simply \Defn{fractions}, where again the adjective is transferred from the things counted to the numbers which count them. Likewise in Algebra, if the units counted are \emph{negative}, the numbers which count them are called \Defn{negative numbers}, where the adjective which defines the nature of the units counted is transferred to the numbers that count them. A whole number means a number of whole units, a fractional number means a number of parts of units, and a negative number means a number of negative units. \end{Remark} %% -----File: 042.png---Folio 36------- \Paragraph{61. Addition and Subtraction of Algebraic Numbers.} An algebraic number which is to be added or subtracted is often \DPtypo{inclosed}{enclosed} in a parenthesis, in order that the signs $+$~and~$-$, which are used to distinguish positive and negative numbers, may not be confounded with the $+$~and~$-$ signs that denote the operations of addition and subtraction. Thus $+4 + (-3)$ expresses the sum, and $+4 - (-3)$ expresses the difference, of the numbers $+4$~and~$-3$. \Paragraph{62. Addition.} In order to add two algebraic numbers, we begin at the place in the series which the first number occupies, and count, \emph{in the direction indicated by the sign of the second number}, as many units as there are in the absolute value of the second number. \Graphic{3} Thus the sum of $+4 + (+3)$ is found by counting from $+4$ three units in \emph{the positive direction}; that is, to the right, and is, therefore,~$+7$. The sum of $+4 + (-3)$ is found by counting from $+4$ three units in \emph{the negative direction}; that is, to the left, and is, therefore,~$+1$. The sum of $-4 + (+3)$ is found by counting from $-4$ three units in the positive direction, and is, therefore,~$-1$. The sum of $-4 + (-3)$ is found by counting from $-4$ three units in the negative direction, and is, therefore,~$-7$. \Paragraph{63. Subtraction.} In order to subtract one algebraic number from another, we begin at the place in the series which the minuend occupies, and count, \emph{in the direction opposite to that indicated by the sign of the subtrahend}, as many units as there are in the absolute value of the subtrahend. Thus the result of subtracting $+3$~from~$+4$ is found by %% -----File: 043.png---Folio 37------- counting from $+4$ three units in the \emph{negative direction}; that is, in the direction \emph{opposite to that indicated by the sign~$+$ before~$3$}, and is, therefore,~$+1$. The result of subtracting $-3$~from~$+4$ is found by counting from $+4$ three units in the \emph{positive direction}, and is, therefore,~$+7$. The result of subtracting $+3$~from~$-4$ is found by counting from $-4$ three units in the \emph{negative direction}, and is, therefore,~$-7$. The result of subtracting $-3$~from~$-4$ is found by counting from $-4$ three units in the \emph{positive direction}, and is, therefore,~$-1$. \Paragraph{64.} Collecting the results obtained in addition and subtraction, we have: \[ \begin{array}{c>{\quad}c} \textsc{Addition.} & \textsc{Subtraction.} \\ +4 + (-3) = +4 - 3 = +1. & +4 - (+3) = +4 - 3 = +1. \\ +4 + (+3) = +4 + 3 = +7. & +4 - (-3) = +4 + 3 = +7. \\ - 4 + (-3) = -4 - 3 = -7. & -4 - (+3) = -4 - 3 = -7. \\ - 4 + (+3) = -4 + 3 = -1. & -4 - (-3) = -4 + 3 = -1. \\ \end{array} \] \Paragraph{65.} From these four cases of addition, therefore, % [**** TN: Book uses commas elsewhere] \Dictum{To Add Algebraic Numbers}\DPtypo{:}{,} \begin{Theorem}[I.] If the numbers have like signs, find the sum of their absolute values, and prefix the common sign to the result. \end{Theorem} \begin{Theorem}[II.] If the numbers have unlike signs, find the difference of their absolute values, and prefix the sign of the greater number to the result. \end{Theorem} \begin{Theorem}[III.] If there are more than two numbers, find the sum of the positive numbers and the sum of the negative numbers, %% -----File: 044.png---Folio 38------- take the difference between the absolute values of these two sums, and prefix the sign of the greater sum to the result. \end{Theorem} \begin{Remark}[Note.] Since the order in which numbers are added is immaterial, we may add any two of the numbers, and then this sum to any third number, and so on. \end{Remark} \Paragraph{66.} The result is generally called the \Defn{algebraic sum}, in distinction from the arithmetical sum; that is, the sum of the absolute values of the numbers. \Paragraph{67.} From the four cases of subtraction in §~64, we see that \textit{subtracting a positive number is equivalent to adding an equal negative number, and subtracting a negative number is equivalent to adding an equal positive number}. \Dictum{To Subtract One Algebraic Number from Another}, \begin{Theorem} Change the sign of the subtrahend, and add the subtrahend to the minuend. \end{Theorem} \Paragraph{68. Examples.} \Item{1.} Find the sum of $3a$, $2a$, $a$, $5a$, $7a$. The sum of the coefficients is $3 + 2 + 1 + 5 + 7 = 18$. Hence the sum of the numbers is~$18a$. \Item{2.} Find the sum of $-5c$, $-c$, $-3c$, $-4c$, $-2c$. The sum of the coefficients is $-5 - 1 - 3 - 4 - 2 = -15$. Hence the sum of the numbers is~$-15c$. \Item{3.} Find the sum of $8x$, $-9x$, $-x$, $3x$, $4x$, $-12x$, $x$. The sum of the positive coefficients is $8 + 3 + 4 + 1 = 16$. The sum of the negative coefficients is $-9 - 1 - 12 = -22$. The difference between $16$~and~$22$ is~$6$, and the sign of the greater is negative. Hence the required sum is~$-6x$. %% -----File: 045.png---Folio 39------- \PrintBreak \Exercise{15.} Find the sum of: \begin{multicols}{2} \Item{1.} $5c$, $23c$, $c$, $11c$. \Item{2.} $4a$, $3a$, $7a$, $10a$. \Item{3.} $7x$, $12x$, $11x$, $9x$. \Item{4.} $6y$, $8y$, $2y$, $35y$. \Item{5.} $-3a$, $-5a$, $-18a$. \Item{6.} $-5x$, $-6x$, $-18x$, $-11x$. \Item{7.} $-3b$, $-b$, $-9b$, $-4b$. \Item{8.} $-z$, $-2z$, $-10z$, $-53z$. \Item{9.} $-11m$, $-3m$, $-5m$, $-m$. \Item{10.} $5d$, $-d$, $-4d$, $2d$. \end{multicols} \Item{11.} $13n$, $13n$, $-11n$, $-6n$, $-9n$, $n$, $2n$, $-3n$. \Item{12.} $5g$, $-3g$, $-6g$, $-4g$, $20g$, $-5g$, $-11g$, $-14g$. \Item{13.} $-9a^{2}$, $5a^{2}$, $6a^{2}$, $a^{2}$, $2a^{2}$, $-a^{2}$, $-3a^{2}$. \Item{14.} $3x^{3}$, $-2x^{3}$, $-5x^{3}$, $-7x^{3}$, $-x^{3}$, $2x^{3}$, $-10x^{3}$, $-x^{3}$. \Item{15.} $4a^{2}b^{2}$, $-a^{2}b^{2}$, $-6a^{2}b^{2}$, $4a^{2}b^{2}$, $-2a^{2}b^{2}$, $a^{2}b^{2}$. \Item{16.} $6mn$, $-5mn$, $mn$, $-3mn$, $4mn$. \Item{17.} $3xyz$, $-2xyz$, $5xyz$, $-7xyz$, $xyz$. \Item{18.} $5a^{3}b^{3}c^{3}$, $-7a^{3}b^{3}c^{3}$, $-3a^{3}b^{3}c^{3}$, $2a^{3}b^{3}c^{3}$. \Item{19.} $11abcd$, $-10abcd$, $-9abcd$, $-abcd$. \Item{20.} Subtract $-a$ from $-b$, and find the value of the result if $a = -4$, $b = -5$. When $a = 4$, $b = -2$, $c = -3$, find the difference in the values of: \Item{21.} $a - b + c$ and $-a + b + c$. \Item{22.} $a + (-b) + c$ and $a - (-b) + c$. \Item{23.} $-a - (-b) + c$ and $-(-a) + (-b) - c$. \Item{24.} $a - b + (-c)$ and $a - (-b) - (-c)$. %% -----File: 046.png---Folio 40------- \Section{MULTIPLICATION AND DIVISION OF ALGEBRAIC NUMBERS} \Paragraph{69. Multiplication.} Multiplication is generally defined in Arithmetic as the process of finding the result when one number (the multiplicand) is taken as many times as there are units in another number (the multiplier). This definition fails when the \emph{multiplier is a fraction}. In multiplying by a fraction, we divide the multiplicand into as many equal parts as there are units in the denominator, and take as many of these parts as there are units in the numerator. If, for example, we multiply $6$~by~$\frac{2}{3}$, we divide $6$ into \emph{three} equal parts and take \emph{two} of these parts, obtaining $4$ for the product. The multiplier,~$\frac{2}{3}$, is~$\frac{2}{3}$ of~$1$, and the product,~$4$, is~$\frac{2}{3}$ of~$6$, in other words, \emph{the product is obtained from the multiplicand precisely as the multiplier is obtained from~$1$}. This statement is also true when the multiplier is a whole number. Thus in $5 × 7 = 35$, the multiplier,~$5$, is equal to \[ 1 + 1 + 1 + 1 + 1, \] and the product,~$35$, is equal to \[ 7 + 7 + 7 + 7 + 7. \] \Paragraph{70.} \Dictum{Multiplication may be defined}, therefore, As the operation of finding from two given numbers, called \emph{multiplicand} and \emph{multiplier}, a third number called \emph{product}, which is \emph{formed from the multiplicand as the multiplier is formed from unity}. \Paragraph{71.} According to this definition of multiplication, \begin{DPalign*}[m] \lintertext{since} +3 &= + 1 + 1 + 1, \\ 3 × (+8) &= +8 + 8 + 8 \Tag{(1)} \\ &= +24, \displaybreak[1] \\ %% -----File: 047.png---Folio 41------- \lintertext{and} 3 × (-8) &= -8 - 8 - 8 \Tag{(2)} \\ &= -24. \displaybreak[1] \\ \lintertext{\indent Again, since} -3 &= -1 - 1 - 1; \\ (-3) × 8 &= -8 - 8 - 8 \Tag{(3)} \\ &= -24, \displaybreak[1] \\ \lintertext{and} (-3) × (-8) &= -(-8) - (-8) - (-8) \Tag{(4)} \\ &= +8 + 8 + 8 \\ &= +24. \end{DPalign*} \Paragraph{72.} From these four cases it follows that in finding the product of two algebraic numbers, if the two numbers have \emph{like} signs, the product will have the \emph{plus} sign, and if \emph{unlike} signs, the product will have the \emph{minus} sign. Hence the \Defn{Law of Signs in Multiplication} is: \begin{Theorem} Like signs give~$+$, and unlike signs give~$-$. \end{Theorem} If $a$~and~$b$ stand for any two numbers, we have \begin{align*} (+a) × (+b) &= +ab, \\ (+a) × (-b) &= -ab, \\ (-a) × (+b) &= -ab, \\ (-a) × (-b) &= +ab. \end{align*} \Paragraph{73. The Index Law in Multiplication.} \begin{DPalign*} \lintertext{\indent Since} a^{2} &= aa, \quad\text{and}\quad a^{3} = aaa, \\ a^{2} × a^{3} &= aa × aaa = aaaaa = a^{5} = a^{2 + 3}; \\ a^{4} × a &= aaaa × a = aaaaa = a^{5} = a^{4 + 1}. \end{DPalign*} If $a$~stands for any number, and $m$~and~$n$ for any integers, \[ a^{m} × a^{n} = a^{m + n}. \EqText{Hence,} \] \begin{Theorem} The index of the product of two powers of the same number is equal to the sum of the indices of the factors. \end{Theorem} %% -----File: 048.png---Folio 42------- \Paragraph{74. Examples.} \Item{1.} Find the product of $6a^{2}b^{2}$ and $7ab^{2}c^{3}$. Since the order of the factors is immaterial, \begin{align*} 6a^{2}b^{3} × 7ab^{2}c^{3} &= 6 × 7 × a^{2} × a × b^{3} × b^{2} × c^{3} \\ &= 42a^{3}b^{5}c^{3}. \end{align*} \Item{2.} Find the product of $-3ab$ and $7ab^{3}$. \begin{align*} -3ab × 7ab^{3} &= -3 × 7 × a × a × b × b^{3} \\ &= -21a^{2}b^{4}. \end{align*} \Paragraph{75. To Find the Product of Simple Expressions}, therefore, \begin{Theorem} Take the product of the coefficients and the sum of the indices of the like letters. \end{Theorem} \Exercise{16.} Find the product of: \begin{multicols}{2} \Item{1.} $5a^{2}$ and $6a^{3}$. \Item{2.} $8ab$ and $5a^{3}b^{2}$. \Item{3.} $9xy$ and $7xy$. \Item{4.} $2a^{2}b$ and $a^{3}b^{4}c^{2}$. \Item{5.} $3a^{3}b^{7}c^{8}$ and $3a^{4}b^{2}c$. \Item{6.} $2a$ and $-5a$. \Item{7.} $-3a$ and $-4b$. \Item{8.} $-ab$ and $a^{3}b^{2}$. \Item{9.} $-2ab^{4}$ and $-5a^{4}bc$. \Item{10.} $-2x^{6}y^{3}z$ and $-6xy^{2}z$. \end{multicols} \Item{11.} $3a^{2}b$, $-5ab^{2}$, and $-7a^{4}b^{2}$. \Item{12.} $2a^{2}bc^{3}$, $-3a^{3}b^{2}c$, and $-ab^{2}c^{3}$. \Item{13.} $2b^{2}c^{2}x^{2}$, $2a^{2}b^{2}c^{3}$, and $-3a^{3}bx^{3}$. \Item{14.} $2a^{3}b^{2}c$, $-3a^{2}b^{3}c$, and $-4a^{2}bc^{3}$. \Item{15.} $7am^{2}x^{3}$, $3a^{4}m^{2}x^{3}$, and $-2amx$. \Item{16.} $-3x^{2}y^{2}z^{2}$, $2x^{2}yz^{3}$, and $-5x^{4}yz$. %% -----File: 049.png---Folio 43------- If $a = -2$, $b = 3$, and $c = -1$, find the value of: \begin{multicols}{2} \Item{17.} $2ab^{2} - 3bc^{2} + c$. \Item{18.} $4a^{2} - 2b^{2} - c^{2}$. \Item{19.} $5a + 2b - 4c^{4}$. \Item{20.} $2a^{3} - 3b + 8c^{2}$. \Item{21.} $-a + 3b - 2c^{2}$. \Item{22.} $-a^{3} - 2b - 10c$. \Item{23.} $3a^{3} - 3b^{3} - 3c^{3}$. \Item{24.} $2ab^{2} - 3bc^{2} + 2ac$. \Item{25.} $3abc + 5a^{2}b^{2} - 2a^{2}b$. \Item{26.} $ab^{2}c^{2} + 2abc^{2} + a^{2}b^{2}c^{2}$. \Item{27.} $2a^{2}bc + 3abc + a^{2}b^{2}c^{2}$. \Item{28.} $6a^{2} + 8a^{2}b^{2} - 5a^{2}bc$. \end{multicols} \Paragraph{76. Division.} To divide $48$~by~$8$ is to find the number of times it is necessary to take $8$ to make~$48$. Here the \emph{product} and \emph{one factor} are given, and \emph{the other factor} is required. We may, therefore, take for the definition of division\Add{:} The operation by which when \emph{the product} and \emph{one factor} are given, \emph{the other factor is found}. With reference to this operation the product is called the \Defn{dividend}, the given factor the \Defn{divisor}, and the required factor the \Defn{quotient}. \Paragraph{77. Law of Signs in Division.} \begin{alignat*}{2} &\text{Since } (+a) × (+b) = +ab,\quad && \therefore +ab ÷ (+a) = +b. \\ &\text{Since } (+a) × (-b) = -ab, && \therefore -ab ÷ (+a) = -b. \\ &\text{Since } (-a) × (+b) = -ab, && \therefore -ab ÷ (-a) = +b. \\ &\text{Since } (-a) × (-b) = +ab, && \therefore +ab ÷ (-a) = -b. \end{alignat*} That is, if the dividend and divisor have like signs, the quotient has the plus sign; and if they have unlike signs, the quotient has the minus sign. Hence, in division, \begin{Theorem} Like signs give~$+$, and unlike signs give~$-$. \end{Theorem} %% -----File: 050.png---Folio 44------- \Paragraph{78. Index Law in Division.} The dividend contains all the factors of the divisor and of the quotient, and therefore the quotient contains the factors of the dividend that are not found in the divisor. Thus, $\dfrac{abc}{bc} = a$, $\dfrac{aabx}{ab} = ax$, $\dfrac{124abc}{-4ab} = -31c$. Divide $a^{5}$~by~$a^{2}$, $a^{6}$~by~$a^{4}$, $a^{4}$~by~$a$\DPtypo{,}{.} \begin{alignat*}{4} \frac{a^{5}}{a^{2}} &= \frac{aaaaa}{aa} &&= aaa &&= a^{3} &&= a^{5-2}; \\ \frac{a^{6}}{a^{4}} &= \frac{aaaaaa}{aaaa} &&= aa &&= a^{2} &&= a^{6-4}\DPtypo{,}{;} \\ \frac{a^{4}}{a} &= \frac{aaaa}{a} &&= aaa &&= a^{3} &&= a^{4-1}\DPtypo{,}{.} \end{alignat*} If $m$~and~$n$ stand for any integers, and $m$~is greater than~$n$\Add{,} \[ a^{m} - a^{n} = a^{m - n}\Add{.} \] \begin{Theorem} The index of the quotient of two powers of the same letter is equal to the index of the letter in the dividend diminished by the index of the letter in the divisor. \end{Theorem} \Paragraph{79. Examples.} \Item{1.} Divide $15xy$~by~$5x$\Add{.} \[ \frac{15xy}{5x} = \frac{3 × 5xy}{5x} = 3y. \] Here we cancel the factors $5$~and~$x$, which are common to the dividend and divisor\Add{.} \Item{2.} Divide $-21a^{2}b^{3}$~by~$3ab^{2}$\Add{.} \[ \frac{-21a^{2}b^{3}}{3ab^{2}} = -7ab. \] %% -----File: 051.png---Folio 45------- \Item{3.} Divide $54a^{5}b^{3}c$~by~$-6ab^{2}c$. \[ \frac{54a^{5}b^{3}c}{-6ab^{2}c} = -9a^{4}b. \] \Item{4.} Divide $-45x^{4}y^{5}z^{7}$~by~$-15x^{4}y^{5}z^{5}$. \[ \frac{-45x^{4}y^{5}z^{7}}{-15x^{4}y^{5}z^{5}} = 3z^{2}. \] \Item{5.} Divide $-15a^{3}b^{2}c^{3}$~by~$-60a^{2}bc^{3}$. \[ \frac{-15a^{3}b^{2}c^{3}}{-60a^{2}bc^{3}} = \frac{ab}{4}. \] \Exercise{17.} Divide: \begin{multicols}{2} \Item{1.} $x^{3}$~by~$x$. \Item{2.} $21x^{5}$~by~$7x^{3}$. \Item{3.} $35x^{2}$~by~$-5x^{2}$. \Item{4.} $-42x^{2}$~by~$6x^{2}$. \Item{5.} $-63x^{5}$~by~$-9x$. \Item{6.} $-72x^{3}$~by~$-8x^{2}$. \Item{7.} $-32a^{2}b^{2}$~by~$8ab^{2}$. \Item{8.} $-16x^{3}y^{3}$~by~$-4xy$. \Item{9.} $18x^{2}y$~by~$-2xy$. \Item{10.} $-25x^{4}y^{2}$~by~$-5x^{3}y^{2}$. \Item{11.} $-51x^{2}y^{3}$~by~$-17x^{2}y$. \Item{12.} $-28a^{4}b^{3}$~by~$7a^{3}b$. \Item{13.} $-36x^{2}y^{6}$~by~$-3xy^{2}$. \Item{14.} $-3x^{4}y^{6}$~by~$-5xy^{3}$. \Item{15.} $-12a^{2}b^{3}$~by~$8ab^{3}$. \Item{16.} $-abcd$~by~$ac$. \Item{17.} $-a^{2}b^{3}c^{4}d^{5}$~by~$-ab^{3}c^{3}d^{3}$. \Item{18.} $2x^{2}y^{2}z^{3}$~by~$-3xyz^{3}$. \Item{19.} $-5a^{5}b^{3}c^{7}$~by~$-a^{4}b^{2}c^{7}$. \Item{20.} $52a^{2}m^{3}n^{4}$~by~$13a^{2}m^{2}n^{3}$. \Item{21.} $13xy^{2}z^{4}$~by~$39xyz$. \Item{22.} $68xc^{2}d^{3}$~by~$-4xcd^{2}$. \Item{23.} $-8m^{5}n^{3}p^{2}$~by~$-4m^{5}np$. \Item{24.} $-6pqr^{3}$~by~$-2p^{2}qr$. \Item{25.} $26a^{2}g^{2}t^{5}$~by~$-2agt^{4}$. \Item{26.} $-a^{4}b^{2}c^{3}$~by~$-a^{5}b^{3}c^{4}$. \Item{27.} $-3x^{2}y^{2}z^{2}$~by~$-2x^{3}y^{4}z^{5}$. \Item{28.} $-6mnp$~by~$-3m^{2}n^{2}p^{2}$. \Item{29.} $-17a^{2}b^{3}c^{4}$~by~$51ab^{5}c^{4}$. \Item{30.} $-19mg^{2}t^{3}$~by~$57m2^gt^{4}$. \end{multicols} %% -----File: 052.png---Folio 46------- \Chapter{IV.}{Addition and Subtraction.} \Section{Integral Compound Expressions.} \Paragraph{80.} If an algebraic expression contains only \emph{integral forms}, that is, contains \emph{no letter in the denominator of any of its }, it is called an \Defn{integral expression}. Thus, $x^{3} + 7cx^{2} - c^{3} - 5c^{2}x$, is an integral expression. Integral and fractional expressions are so named on of the \emph{form of the expressions}, and with no reference whatever to the \emph{numerical value} of the expressions when definite numbers are put in place of the letters. \Paragraph{81. Addition of Integral Compound Expressions.} The addition of two algebraic expressions can be represented by connecting the second expression with the first by the sign~$+$. If there are no like in the two expressions, the operation is \emph{algebraically complete} when the two expressions are thus connected. If, for example, it is required to add $m + n - p$ to $a + b + c$, the result will be $a + b + c + (m + n - p)$; or, removing the parenthesis (§~37), $a + b + c + m + n - p$. \Paragraph{82.} If there are like in the expressions, the like can be \emph{collected}; that is, every set of like can be replaced by a single term with a coefficient equal to the algebraic sum of the coefficients of the like . %% -----File: 053.png---Folio 47------- \Item{1.} Add $6x^{2} + 5x + 4$ to $x^{2} - 4x - 5$. \begin{DPalign*} \lintertext{\indent The sum} &= x^{2} - 4x - 5 + (6x^{2} + 5x + 4) \\ &= x^{2} - 4x - 5 + 6x^{2} + 5x + 4 \rintertext{§~37} \\ &= x^{2} + 6x^{2} - 4x + 5x - 5 + 4 \\ &= 7x^{2} + x - 1. \end{DPalign*} This process is more conveniently represented by arranging the in columns, so that like shall stand in the same column, as follows: \[ \begin{array}{r*{2}{cr}} x^{2} &-& 4x &-& 5 \\ 6x^{2} &+& 5x &+& 4 \\ \hline 7x^{2} &+& x &-& 1 \\ \end{array} \] The coefficient of~$x^{2}$ in the result will be $6 + 1$, or~$7$; the coefficient of~$x$ will be $-4 + 5$, or~$1$; and the last term is $-5 + 4$, or~$-1$. \begin{Remark}[Note.] When the coefficient of a term is~$1$, it is not written, but understood. \end{Remark} \Item{2.} Add $2c^{3} - 5c^{2}d + 6cd^{2} + d^{3}$; $c^{3} + 6c^{2}d - 5cd^{2} - 2d^{3}$; and $3c^{3} - c^{2}d - 7cd^{2} - 3d^{3}$. \[ \begin{array}{r*{3}{cr}} 2c^{3} &-& 5c^{2}d &+& 6cd^{2} &+& d^{3} \\ c^{3} &+& 6c^{2}d &-& 5cd^{2} &-& 2d^{3} \\ 3c^{3} &-& c^{2}d &-& 7cd^{2} &-& 3d^{3} \\ \hline 6c^{3} & & &-& 6cd^{2} &-& 4d^{3} \\ \end{array} \] The coefficient of~$c^{3}$ in the result will be $2 + 1 + 3$, or~$6$; the coefficient of~$c^{2}d$ will be $-5 + 6 - 1$, or~$0$; therefore $c^{2}d$ will not appear in the result; the coefficient of~$cd^{2}$ will be $6 - 5 - 7$, or~$-6$; and the coefficient of~$d^{3}$ will be $1 - 2 - 3$, or~$-4$. %% -----File: 054.png---Folio 48------- \Exercise{18.} Find the sum of: \Item{1.} $a^{2} - ab + b^{2}$; $a^{2} + ab + b^{2}$. \Item{2.} $3a^{2} + 5a-7$; $6a^{2} - 7a + 13$. \Item{3.} $x + 2y - 3z$; $-3x + y + 2z$; $2x - 3y + z$. \Item{4.} $3x + 2y - z$; $-x + 3y + 2z$; $2x - y + 3z$. \Item{5.} $-3a + 2b + c$; $a - 3b + 2c$; $2a + 3b - c$. \Item{6.} $-a + 3b + 4c$; $3a - b + 2c$; $2a + 2b - 2c$. \Item{7.} $4a^{2} + 3a + 5$; $-2a^{2} + 3a - 8$; $a^{2} - a + 1$. \Item{8.} $5ab + 6bc - 7ac$; $3ab - 9bc + 4ac$; $3bc + 6ac$. \Item{9.} $x^{3} + x^{2} + x$; $2x^{3} + 3x^{2} - 2x$; $3x^{3} - 4x^{2} + x$. \Item{10.} $3y^{2} - x^{2} - 3xy$; $5x^{2} + 6xy - 7y^{2}$; $x^{2} + 2y^{2}$. \Item{11.} $2a^{2} - 2ab + 3b^{2}$; $4b^{2} + 5ab - 2a^{2}$; $a^{2} - 3ab - 9b^{2}$. \Item{12.} $a^{3} - a^{2} + a - 1$; $a^{2} - 2a + 2$; $3a^{3} + 7a + 1$. \Item{13.} $2m^{3} - m^{2} - m$; $4m^{3} + 8m^{2} - 7$; $-3m^{3} + m + 9$. \Item{14.} $x^{3} - 3x + 6y$; $x^{2} + 2x - 5y$; $x^{3} - 3x^{2} + 5x$. \Item{15.} $6x^{3} - 5x + 1$; $x^{3} + 3x + 4$; $7x^{2} + 2x - 3$. \Item{16.} $a^{3} + 3a^{2}b - 3ab^{2}$; $-3a^{2}b - 6ab^{2} - b^{3}$; $3a^{2}b + 4ab^{2}$. \Item{17.} $a^{3} - 2a^{2}b - 2ab^{2}$; $a^{2}b - 3ab^{2} - b^{3}$; $3ab^{2} - 2a^{3} - b^{3}$. \Item{18.} $7x^{3} - 2x^{2}y + 9xy^{2} + 13y^{3}$; $5x^{2}y - 4xy^{2} - 2x^{3} - 3y^{3}$; $y^{3} - x^{3} - 3x^{2}y - 5xy^{2}$; $2x^{2}y - 5y^{3} - 2x^{3} - xy^{2}$. \Item{19.} Show that $x + y + z = 0$, if $x = a - b - c$, $y = 2b + 2c - 3a$, and $z = 2a - b - c$. \Item{20.} Show that $x + y = 3z$, if $x = 3a^{2} - 6a + 12$, $y = 9a^{2} + 12a - 21$, and $z = 4a^{2} + 2a - 3$. %% -----File: 055.png---Folio 49------- \Paragraph{83. Subtraction of Integral Compound Expressions.} The subtraction of one expression from another, if none of the are alike, can be represented only by connecting the subtrahend with the minuend by means of the sign~$-$. If, for example, it is required to subtract $a + b + c$ from $m + n - p$, the result will be represented by \[ m + n - p - (a + b + c); \] or, removing the parenthesis (§~38), \[ m + n - p - a - b - c. \] If, however, some of the in the two expressions are alike, we can replace two like by a single term. Thus, suppose it is required to subtract $a^{3} + 2a^{2} + 3a - 5$ from $2a^{3} - 3a^{2} + 2a - 1$; the result may be expressed as follows: \[ 2a^{3} - 3a^{2} + 2a - 1 - (a^{3} + 2a^{2} + 3a - 5); \] or, removing the parenthesis (§~38), \begin{align*} &2a^{3} - 3a^{2} + 2a - 1 - a^{3} - 2a^{2} - 3a + 5 \\ &\quad= 2a^{3} - a^{3} - 3a^{2} - 2a^{2} + 2a - 3a - 1 + 5 \\ &\quad= a^{3} - 5a^{2} - a + 4. \end{align*} This process is more easily performed by writing the subtrahend below the minuend, \emph{mentally} changing the sign of each term in the subtrahend, and adding. \[ \begin{array}{r*{3}{cr}} 2a^{3} &-& 3a^{2} &+& 2a &-& 1 \\ a^{3} &+& 2a^{2} &+& 3a &-& 5 \\ \hline a^{3} &-& 5a^{2} &-& a &+& 4 \\ \end{array} \] By changing the sign of each term in the subtrahend, the coefficient of~$a^{3}$ will be $2 - 1$, or~$1$; the coefficient of~$a^{2}$ will be $-3 - 2$, or~$-5$; the coefficient of~$a$ will be~$2 - 3$, or~$-1$; the last term will be $-1 + 5$, or~$4$. %% -----File: 056.png---Folio 50------- Again, suppose it is required to subtract $x^{5} - 2ax^{4} - 3a^{2} x^{3} + 4a^{3} x^{2}$ from $4a^{3} x^{2} - 2a^{2} x^{3} - 5ax^{4}$. Here which are alike can be written in columns, as before: \[ \begin{array}{r*{3}{cr}} &-& 5ax^{4} &-& 2a^{2} x^{3} &+& 4a^{3} x^{2} \\ x^{5} &-& 2ax^{4} &-& 3a^{2} x^{3} &+& 4a^{3} x^{2} \\ \hline -x^{5} &-& 3ax^{4} &+& a^{2} x^{3} & & \end{array} \] There is no term of~$x^{5}$ in the minuend, hence the coefficient of~$x^{5}$ in the result will be~$0 - 1$, or~$-1$; the coefficient of~$ax^{4}$ will be $-5 + 2$, or~$-3$; the coefficient\DPtypo{,}{} of~$a^{2}x^{3}$ will be $-2 + 3$, or~$+1$; the coefficient of~$a^{3}x^{2}$ will be $-4 + 4$, or~$0$, and therefore the term~$a^{3}x^{2}$ will not appear in the result. \Exercise{19.} Subtract: \Item{1.} $a - 2b + 3c$ from $2a - 3b + 4c$. \Item{2.} $a - 3b - 5c$ from $3a - 5b + c$. \Item{3.} $2x - 4y + 6z$ from $4x - y - 2z$. \Item{4.} $5x - 11y - 3z$ from $6x - 7y + 2z$. \Item{5.} $ab - ac - bc + bd$ from $ab + ac + bc + bd$. \Item{6.} $3ab + 2ac - 3bc + bd$ from $5ab - ac + bc + bd$. \Item{7.} $2x^{3} - x^{2} - 5x + 3$ from $3x^{3} + 2x^{2} - 3x - 5$. \Item{8.} $7x^{2} - 5x + 1 - a$ from $x^{3} - x + 1 - a$. \Item{9.} $7b^{3} + 8c^{3} - 15abc$ from $9b^{3} + 3abc - 7c^{3}$. \Item{10.} $x^{4} + x - 5x^{3} + 5$ from $7 - 2x^{2} - 3x^{3} + x^{4}$. \Item{11.} $a^{3} + b^{3} + c^{3} - 3abc$ from $3abc + a^{3} - 2b^{3} - 3c^{3}$. \Item{12.} $2x^{4} - 5x^{2} + 7x - 3$ from $x^{4} + 2 - 2x^{3} - x^{2}$. \Item{13.} $1 - x^{5} - x + x^{4} - x^{3}$ from $x^{4} + 1 + x + x^{2}$. \Item{14.} $a^{3} - b^{3} + 3a^{2}b - 3ab^{2}$ from $a^{3} + b^{3} - a^{2}b - ab^{2}$. \Item{15.} $a^{2} b - ab^{2} - 3a^{3} b^{3} - b^{4}$ from $b^{4} - 5a^{3} b^{3} - 2ab^{2} + a^{2} b$. \Item{16.} $-x^{3} + 7x^{2} y - 2y^{3} + 3xy^{2}$ from $3x^{3} + 5y^{3} - xy^{2} + 4x^{2}y$. %% -----File: 057.png---Folio 51------- \Paragraph{84. Parentheses or Brackets.} We have for positive numbers (§§~37,~38): \begin{alignat*}{2} a + (b + c) &= a + b + c,\qquad & \therefore a + b + c &= a + (b + c); \\ a + (b - c) &= a + b - c, & \therefore a + b - c &= a + (b - c); \\ a - (b + c) &= a - b - c, & \therefore a - b - c &= a - (b + c); \\ a - (b - c) &= a - b + c, & \therefore a - b + c &= a - (b - c). \end{alignat*} That is, a parenthesis preceded by~$+$ may be removed \emph{without changing the sign of any term within the parenthesis}; and any number of may be enclosed within a parenthesis preceded by the sign~$+$, \emph{without changing the sign of any term}. A parenthesis preceded by the sign~$-$ may be removed, \emph{provided the sign of every term within the parenthesis is changed}, namely, $+$~to~$-$, and $-$~to~$+$; and any number of may be enclosed within a parenthesis preceded by the sign~$-$, \emph{provided the sign of every term enclosed is changed}. The same laws hold for \emph{negative numbers}. \Paragraph{85.} Expressions may occur having a parenthesis within a parenthesis. In such cases parentheses of different shapes are used, and the beginner when he meets with a branch of a parenthesis~$($, or bracket~$[$, or brace~$\{$, must look carefully for the other part, whatever may intervene; and all that is included between the two parts of each parenthesis must be treated as the sign before it directs, without regard to other parentheses. It is best to remove each parenthesis in succession, \emph{beginning with the innermost}. \begin{align*} a - &\bigl\{b - [c - (d - e) + f]\bigr\} \\ &= a - \bigl\{b - [c - d + e + f]\bigr\} \\ &= a - \bigl\{b - c + d - e - f\bigr\} \\ &= a - b + c - d + e + f. \end{align*} %% -----File: 058.png---Folio 52------- \Exercise{20.} Remove the brackets and collect the like : \Item{1.} $a - b - (b - c) - a + 2b$. \Item{2.} $x - [x - (a - b) + a - y]$. \Item{3.} $3x - \bigl\{2y - [-7c - 2x] + y\bigr\}$. \Item{4.} $5a - [7 - (2b + 5) - 2a]$. \Item{5.} $x - [2x + (3a - 2x) - 5a]$. \Item{6.} $x - [15y - (13z + 12x)]$. \Item{7.} $2a - b + [4c - (b + 2c)]$. \Item{8.} $5a - \bigl\{b + [3c - (2b - c)]\bigr\}$. \Item{9.} $7x - \bigl\{5y - [3z - (3x + z)]\bigr\}$. \Item{10.} $(a - b + c) - (b - a - c) + (a + b - 2c)$. \Item{11.} $3x - [-2y - (2y - 3x) + z] + [x - (y - 2z - x)]$. \Item{12.} $x - [2x + (x - 2y) + 2y] - 3x - \bigl\{4x - [(x + 2y) - y]\bigr\}$. \Item{13.} $x - [y + z - x - (x + y) - z] + (3 x - \Vinc{2y + z})$. \begin{Remark}[Note.] The expression $-\Vinc{2y + z}$ is equivalent to~$-(2y + z)$. \end{Remark} Consider \emph{all the factors} that precede $x$,~$y$, and~$z$, respectively, as the \emph{coefficients} of these letters, and collect in brackets the coefficients of each of these letters: \Item{14.} $ax + by + cz - ay + az - bx = (a - b)x - (a - b)y + (a + c)z$. \Item{15.} $ax + az + by - cz - ay + cx$. \Item{16.} $2ax - 3ay - 4by + 5cx - 6bz - 7cz$. \Item{17.} $az - bmy + 3 cz - anx - cny + acx$. \Item{18.} $mnx - x - mny - y + mnz + z$. %% -----File: 059.png---Folio 53------- \Chapter{V.}{Multiplication and Division.} \Section{Compound Integral Expressions.} \Paragraph{86. Multiplication. Polynomials by Monomials.} We have for positive numbers (§~39), \begin{align*} a(b + c) &= ab + ac, \\ a(b - c) &= ab - ac. \end{align*} The same law holds for negative numbers. \Dictum{To multiply a polynomial by a monomial}, therefore, \begin{Theorem} Multiply each term of the polynomial by the monomial, and add the partial products. \end{Theorem} \Item{1.} Find the product of $ab + ac - bc$ and~$abc$. \[ \begin{array}{rcr} ab + ac - bc && \\ abc && \\ \hline a^{2}b^{2}c + a^{2}bc^{2} &-& ab^{2}c^{2} \end{array} \] \begin{Remark}[Note.] We multiply~$ab$, the first term of the multiplicand, by~$abc$, and work to the right. \end{Remark} \Exercise{21.} Find the product of: \begin{multicols}{2} \Item{1.} $x + 7$ and $x$. \Item{2.} $2x - 3y$ and $4x$. \Item{3.} $2x - 3y$ and $7y$. \Item{4.} $x - 2a$ and $2a$. \Item{5.} $-x + 3b$ and $-b$. \Item{6.} $2a^{2} - 3ab$ and $-3a$. \Item{7.} $2x^{2} + 3xz$ and $5z$. \Item{8.} $a^{2} - 5ab$ and $5ab$. %% -----File: 060.png---Folio 54------- \Item{9.} $x^{2} - 3 xy$ and $-y^{2}$. \Item{10.} $2 x^{3} - 3x^{2}$ and $2x^{2}$. \Item{11.} $x^{2} - 3y^{2}$ and $4y$. \Item{12.} $x^{2} - 3 y^{2}$ and $-x^{2}$. \Item{13.} $b^{3} - a^{2}b^{2}$ and $-a^{3}$. \Item{14.} $-a^{2}b^{2} - a^{3}$ and $-a^{2}$. \Item{15.} $2x^{3} - 3x^{2} + x$ and $2x^{2}$. \Item{16.} $a^{2} - 5ab - b^{2}$ and $5ab$. \end{multicols} \Item{17.} $a^{3} + 2a^{2}b + 2ab^{2}$ and $a^{2}$. \Item{18.} $a^{3} + 2a^{2}b + 2ab^{2}$ and $b^{3}$. \Item{19.} $4x^{2} - 6xy - 9y^{2}$ and $2x$. \Item{20.} $-x^{2} - 2xy + y^{2}$ and $-y$. \Item{21.} $-a^{3} - a^{2}b^{2} - b^{3}$ and $-a^{2}$. \Item{22.} $-x^{2} + 2xy - y^{2}$ and $-y^{2}$. \Item{23.} $3 a^{2}b^{2} - 4 ab^{3} + a^{3}b$ and $5 a^{2}b^{2}$. \Item{24.} $-ax^{2} + 3axy^{2} - ay^{4}$ and $-3ay^{2}$. \Item{25.} $x^{12} - x^{10}y^{3} - x^{3}y^{10}$ and $x^{3}y^{2}$. \Item{26.} $-2x^{3} + 3x^{2}y^{2} - 2xy^{3}$ and $-2x^{2}y^{3}$. \Item{27.} $a^{3}x^{2}y^{5} - a^{2}xy^{4} - ay^{3}$ and $a^{7}x^{3}y^{5}$. \Item{28.} $3a^{2}b^{2} - 2ab^{3} + 5a^{3}b$ and $5a^{2}b^{3}$. \Paragraph{87. Multiplication. Polynomials by Polynomials.} If we have $m + n +p$ to be multiplied by $a + b + c$, we may substitute~$M$ for the multiplier $a + b + c$. Then \[ M(m + n + p) = Mm + Mn + Mp. \] If now we substitute $a + b + c$ for~$M$, we shall have \begin{align*} &(a + b + c) m + (a + b + c) n + (a + b + c) p \\ &= am + bm + cm + an + bn + cn + ap + bp + \DPtypo{.}{} \\ &= am + an + ap + bm + bn + bp + cm + cn + . \end{align*} \Dictum{To find the product of two polynomials}, therefore, \begin{Theorem} Multiply every term of the multiplicand by each term of the multiplier, and add the partial products. \end{Theorem} %% -----File: 061.png---Folio 55------- \Paragraph{88.} In multiplying polynomials, it is a convenient arrangement to write the multiplier under the multiplicand, and place like of the partial products in columns. \Item{1.} Multiply $2x - 3y$ by $5x - 4y$. \[ \begin{array}{ccrrcr} 2x &-& 3&y && \\ 5x &-& 4&y && \\ \cline{1-4} 10x^{2} &-& 15&xy & & \\ &-& 8&xy &+& 12y^{2} \\ \hline 10x^{2} &-& 23&xy &+& 12y^{2} \\ \end{array} \] We multiply~$2x$, the first term of the multiplicand, by~$5x$, the first term of the multiplier, and obtain~$10x^{2}$, then~$-3y$, the second term of the multiplicand, by~$5x$, and obtain~$-15xy$. The first line of partial products is $10x^{2} - 15xy$. In multiplying by~$-4y$, we obtain for a second line of partial products $-8xy + 12y^{2}$, which is put one place to the right, so that the like $-15xy$~and~$-8xy$ may stand in the same column. We then add the coefficients of the like , and obtain the complete product in its simplest form. \Item{2.} Multiply $2a + 3 - 4a^{2}$ by $3 - 2a^{2} - 3a$. Arrange both multiplicand and multiplier according to the \emph{ascending} powers of~$a$. \[ \begin{array}{r*{4}{cr}} 3 &+& 2a &-& 4a^{2} & & && \\ 3 &-& 3a &-& 2a^{2} & & && \\ \cline{1-5} 9 &+& 6a &-&12a^{2} & & && \\ &-& 9a &-& 6a^{2} &+&12a^{3} & & \\ & & &-& 6a^{2} &-& 4a^{3} &+& 8a^{4} \\ \hline 9 &-& 3a &-&24a^{2} &+& 8a^{3} &+& 8a^{4} \\ \end{array} \] %% -----File: 062.png---Folio 56------- \Item{3.} Multiply $3x + x^{4} - 2x^{2}$ by $x^{3} - 2 - x$. Arrange according to the \emph{descending} powers of~$x$. \[ \begin{array}{r*{5}{cr}} x^{4} &-& 2x^{2} &+& \PadTo[l]{3x^4}{3x} && && && \\ x^{3} &-& \PadTo[c]{2x^2}{x} &-& \PadTo[l]{3x^4}{2}&& && && \\ \cline{1-5} x^{7} &-& 2x^{5} &+& 3x^{4} && && && \\ &-& x^{5} & & &+& 2x^{3} &-& 3x^{2} && \\ & & &-& 2x^{4} & & &+& 4x^{2} &-& 6x \\ \hline x^{7} &-& 3x^{5} &+& x^{4} &+& 2x^{3} &+& x^{2} &-& 6x \\ \end{array} \] \Item{4.} Multiply $a^{2} + b^{2} + c^{2} - ab - bc - ac$ by $a + b + c$. Arrange according to descending powers of~$a$. \[ \begin{array}{l*{8}{cr}} a^{2} &-& ab &-& ac &+& b^{2} &-& bc &+& c^{2} \\ a &+& b &+& c \\ \cline{1-11} a^{3} &-& a^{2}b &-& a^{2}c &+& ab^{2} &-& abc &+& ac^{2} \\ &+& a^{2}b & & &-& ab^{2} &-& abc & & &+& b^{3} &-& b^{2}c + bc^{2} \\ & & &+& a^{2}c & & &-& abc &-& ac^{2} & & &+& b^{2}c - bc^{2} &+& c^{3} \\ \hline a^{3} & & & & & & &-&3abc & & &+& b^{3} & & &+& c^{3} \\ \end{array} \] \begin{Remark}[Note.] The pupil should observe that, with a view to bringing like of the partial products in columns, the of the multiplicand and multiplier are arranged in the \emph{same order}. \end{Remark} \ScreenBreak \Exercise{22.} Find the product of: \begin{multicols}{2} \Item{1.} $x + 7$ and $x + 6$. \Item{2.} $x - 7$ and $x + 6$. \Item{3.} $x + 7$ and $x - 6$. \Item{4.} $x - 7$ and $x - 6$. \Item{5.} $x + 8$ and $x - 5$. \Item{6.} $2x + 3$ and $2x + 3$. \Item{7.} $2x - 3$ and $2x - 3$. \Item{8.} $2x + 3$ and $2x - 3$. \Item{9.} $3x - 2$ and $2 - 3x$. \Item{10.} $5x - 3$ and $4x - 7$. \Item{11.} $a - 2b$ and $a + 3b$. \Item{12.} $a - 7b$ and $a - 5b$. %% -----File: 063.png---Folio 57------- \Item{13.} $5x - 3y$ and $5x - 3y$. \Item{14.} $x - b$ and $x - c$. \Item{15.} $2m - p$ and $4m - 3p$. \Item{16.} $a + b + c$ and $a - c$. \Item{17.} $a^{2} - ab + b^{2}$ and $a^{2} + b^{2}$. \Item{18.} $x^{3} - 3x^{2} + 7$ and $x^{2} - 3$. \Item{19.} $a^{2} + ab + b^{2}$ and $a - b$. \Item{20.} $a^{2} - ab + b^{2}$ and $a + b$. \end{multicols} \Item{21.} $x^{2} + 5x - 10$ and $2x^{2} + 3x - 4$. \Item{22.} $3x^{3} - 2x^{2} + x$ and $3x^{2} + 2x - 2$. \Item{23.} $x^{3} + 2x^{2}y + 3xy^{2}$ and $x^{2} - 2xy + y^{2}$. \Item{24.} $a^{2} - 3ab - b^{2}$ and $-a^{2} + ab + 2b^{2}$. \Item{25.} $3a^{2}b^{2} + 2 ab^{3} - 5a^{3}b$ and $5a^{2}b^{2} - ab^{3} - b^{4}$. \Item{26.} $a^{2} - 2ab + b^{2}$ and $a^{2} + 2ab + b^{2}$. \Item{27.} $ab + ac + cd$ and $ab - ac + cd$. \Item{28.} $3x^{2}y^{2} + xy^{3} - 2x^{3}y$ and $x^{2}y^{2} + xy^{3} - 3y^{4}$. \Item{29.} $x^{2} + 2xy - y^{2}$ and $x^{2} - 2xy + y^{2}$. \Item{30.} $3x^{2} + xy - y^{2}$ and $x^{2} - 2xy - 3y^{2}$. \Item{31.} $a^{2} - 2ab - b^{2}$ and $b^{2} - 2ab - a^{2}$. \Item{32.} $a^{2} + b^{2} + c^{2} - ac$ and $a^{2} - b^{2} - c^{2}$. \Item{33.} $a^{2} + 4abx - 4a^{2}b^{2}x^{2}$ and $a^{2} - 4abx + 4a^{2}b^{2}x^{2}$. \Item{34.} $3 a^{2} - 2abx + b^{2}x^{2}$ and $2a^{2} + 3abx - 2b^{2}x^{2}$. \Item{35.} $2x^{3}y + 4x^{2}y^{2} - 8xy^{3}$ and $2xy^{3} - 3x^{2}y^{2} + 5x^{3}y$. \Paragraph{89. Division. Polynomials by Monomials.} \begin{DPalign*} \lintertext{\indent Since} a(b + c - d) &= ab + ac - ad, \\ \therefore \frac{ab + ac - ad}{a} &= \frac{ab}{a} + \frac{ac}{a} - \frac{ad}{a} \\ &= b + c - d. \end{DPalign*} %% -----File: 064.png---Folio 58------- \Dictum{To divide a polynomial by a monomial}, therefore, \begin{Theorem} Divide each term of the dividend by the divisor, and add the partial quotients. \end{Theorem} Divide $3a^{4}b^{2}c - 9a^{3}bc^{2} - 6a^{2}c^{3}$ by $3a^{2}c$. \begin{align*} \frac{3a^{4}b^{2}c - 9a^{3}bc^{2} - 6a^{2}c^{3}}{3a^{2}c} &= \frac{3a^{4}b^{2}c}{3a^{2}c} - \frac{9a^{3}bc^{2}}{3a^{2}c} - \frac{6a^{2}c^{3}}{3a^{2}c} \\ &= a^{2}b^{2} - 3abc - 2c^{2}. \end{align*} \Exercise{23.} Divide: \begin{multicols}{2} \Item{1.} $2a^{3} - a^{2}$ by $a$. \Item{2.} $42a^{5} - 6a^{2}$ by $6a$. \Item{3.} $21x^{4} + 3x^{2}$ by $3x^{2}$. \Item{4.} $35m^{4} - 7p^{2}$ by $7$. \Item{5.} $27x^{5} - 45x^{4}$ by $9x^{2}$. \Item{6.} $24x^{6} - 8x^{3}$ by $-8x^{3}$. \Item{7.} $34x^{3} - 51x^{2}$ by $17x$. \Item{8.} $5x^{5} - 10x^{3}$ by $-5x^{3}$. \Item{9.} $-3a^{2} - 6ac$ by $-3a$. \Item{10.} $-5x^{3} + x^{2}y$ by $-x^{2}$. \Item{11.} $2a^{5}x^{3} - 2a^{4}x^{2}$ by $2a^{4}x^{2}$. \Item{12.} $-x^{2}y - x^{2}y^{2}$ by $-xy$. \Item{13.} $9a - 12b + 6c$ by $-3$. \Item{14.} $a^{3}b^{2} - a^{2}b^{5} - a^{4}b^{2}$ by $a^{2}b$. \Item{15.} $3x^{3} - 6x^{2}y - 9xy^{2}$ by $3x$. \Item{16.} $x^{2}y^{2} - x^{3}y - xy^{3}$ by $xy$. \Item{17.} $a^{3} - a^{2}b - ab^{2}$ by $-a$. \Item{18.} $a^{2}b - ab + ab^{2}$ by $-ab$. \Item{19.} $xy - x^{2}y^{2} + x^{3}y^{3}$ by $-xy$. \Item{20.} $-x^{6} - 2x^{5} - x^{4}$ by $-x^{4}$. \end{multicols} \Item{21.} $a^{2}x - abx - acx$ by $ax$. \Item{22.} $3x^{5}y^{2} - 3x^{4}y^{3} - 3x^{2}y^{4}$ by $3x^{2}y^{2}$. \Item{23.} $a^{2}b^{2} - 2ab - 3ab^{3}$ by $ab$. \Item{24.} $3a^{3}c^{3} + 3a^{2}c - 3ac^{2}$ by $3ac$. %% -----File: 065.png---Folio 59------- \Paragraph{90. Division. Polynomials by Polynomials.} \[ \begin{array}{l*{4}{cr}} \text{If the divisor (one factor)} &=& & & a &+& b &+& c, \\ \text{and the quotient (other factor)} &=& & & n &+& p &+& q, \\ \cline{5-9} & & & &an &+& bn&+& cn \\ \text{then the dividend (product)} &=& \smash{\left\{\threelines\right.}\kern-4pt &+&ap &+& bp&+& \\ & & &+&aq &+& bq&+& cq\rlap{.} \\ \end{array} \] The first term of the dividend is~$an$; that is, the product of~$a$, the first term of the divisor, by~$n$, the first term of the quotient. The first term~$n$ of the quotient is therefore found by dividing~$an$, the first term of the dividend, by~$a$, the first term of the divisor. If the partial product formed by multiplying the entire divisor by~$n$ be subtracted from the dividend, the first term of the remainder~$ap$ is the product of~$a$, the first term of the divisor, by~$p$, the second term of the quotient; that is, the second term of the quotient is obtained by dividing the first term of the remainder by the first term of the divisor. In like manner, the third term of the quotient is obtained by dividing the first term of the new remainder by the first term of the divisor; and so on. \Dictum{To divide one polynomial by another}, therefore, \begin{Theorem} Arrange both the dividend and divisor in ascending or descending powers of some common letter. Divide the first term of the dividend by the first term of the divisor. Write the result as the first term of the quotient. Multiply all the of the divisor by the first term of the quotient. Subtract the product from the dividend. If there is a remainder, consider it as a new dividend, and proceed as before. \end{Theorem} %% -----File: 066.png---Folio 60------- \Paragraph{91.} It is of fundamental importance to arrange the dividend and divisor \emph{in the same order} with respect to a common letter, and \emph{to keep this order throughout the operation}. The beginner should study carefully the processes in the following examples: \Item{1.} Divide $x^{2} + 18x + 77$ by $x + 7$. \[ \begin{array}{r*{2}{cr}|l} x^{2} &+& 18x &+& 77 & x + 7 \\ \cline{6-6} x^{2} &+& 7x & & & x + 11 \\ \cline{1-5} & & 11x &+& \NoBar{77} \\ & & 11x &+& \NoBar{77} \\ \cline{3-5} \end{array} \] \begin{Remark}[Note.] The pupil will notice that by this process we have in effect separated the dividend into two parts, $x^{2} + 7x$ and $11x + 77$, and divided each part by $x + 7$, and that the complete quotient is the sum of the partial quotients $x$~and~$11$. Thus, \begin{align*} x^{2} + 18x + 77 &= x^{2} + 7x + 11x + 77 = (x^{2} + 7x) + (11x + 77). \\ \therefore \frac{x^{2} + 18x + 77}{x + 7} &= \frac{x^{2} + 7x}{x + 7} + \frac{11x + 77}{x + 7} = x + 11. \end{align*} \end{Remark} \Item{2.} Divide $a^{2} - 2ab + b^{2}$ by $a - b$. \[ \begin{array}{r*{2}{cr}|l} a^{2} &-& 2ab &+& b^{2} & a - b \\ \cline{6-6} a^{2} &-& ab & & & a - b \\ \cline{1-5} &-& ab &+& \NoBar{b^{2}} \\ &-& ab &+& \NoBar{b^{2}} \\ \cline{2-5} \end{array} \] \Item{3.} Divide $a^{4} - ab^{3} + b^{4} + 2a^{2}b^{2} - a^{3}b$ by $a^{2} + b^{2}$. Arrange according to the descending powers of~$a$. \[ \begin{array}{r*{4}{cr}|l} a^{4} &-& a^{3}b &+& 2a^{2}b^{2} &-& ab^{3} &+& b^{4} & a^{2} + b^{2} \\ \cline{10-10} a^{4} & & &+& a^{2}b^{2} & & & & & a^{2} - ab + b^{2} \\ \cline{1-9} &-& a^{3}b &+& a^{2}b^{2} &-& ab^{3} &+& \NoBar{b^{4}} \\ &-& a^{3}b & & &-& ab^{3} \\ \cline{2-9} & & &+& a^{2}b^{2} & & &+& \NoBar{b^{4}} \\ & & &+& a^{2}b^{2} & & &+& \NoBar{b^{4}} \\ \cline{4-9} \end{array} \] %% -----File: 067.png---Folio 61------- \Item{4.} Divide $10a^{2}b^{2} - 20b^{4} - 17a^{3}b + 6a^{4} + ab^{3}$ by $2a^{2} - 4b^{2} - 3ab$. Arrange according to descending powers of~$a$. \[ \begin{array}{r*{4}{cr}|l} 6a^{4} &-&17a^{3}b &+& 10a^{2}b^{2} &+& ab^{3} &-& 20b^{4} & 2a^{2} - 3ab - 4b^{2} \\ \cline{10-10} 6a^{4} &-& 9a^{3}b &-& 12a^{2}b^{2} & & & & & 3a^{2} - 4ab + 5b^{2} \\ \cline{1-9} &-& 8a^{3}b &+& 22a^{2}b^{2} &+& ab^{3} &-& \NoBar{20b^{4}} \\ &-& 8a^{3}b &+& 12a^{2}b^{2} &+&16ab^{3} \\ \cline{2-9} & & & & 10a^{2}b^{2} &-&15ab^{3} &-& \NoBar{20b^{4}} \\ & & & & 10a^{2}b^{2} &-&15ab^{3} &-& \NoBar{20b^{4}} \\ \cline{5-9} \end{array} \] \Item{5.} Divide $5x^{3} - 3x^{4} - 4x^{2} + 1 + x$ by $1 + 2x - 3x^{2}$. Arrange according to ascending powers of~$x$. \[ \begin{array}{r*{4}{cr}|l*{2}{cr}} 1 &+& x &-& 4x^{2} &+& 5x^{3} &-& 3x^{4} & 1 &+& 2x &-& 3x^{2} \\ \cline{10-14} 1 &+& 2x &-& 3x^{2} & & & & & 1 &-& x &+& x^{2} \\ \cline{1-9} &-& x &-& x^{2} &+& 5x^{3} &-& \NoBar{3x^{4}} \\ &-& x &-& 2x^{2} &+& 3x^{3} \\ \cline{2-9} & & & & x^{2} &+& 2x^{3} &-& \NoBar{3x^{4}} \\ & & & & x^{2} &+& 2x^{3} &-& \NoBar{3x^{4}} \\ \end{array} \] \Item{6.} Divide $a^{3} + b^{3} + c^{3} - 3abc$ by $a + b + c$. Arrange according to descending powers of~$a$. \[ %[** TN: Re-formatted slightly from the original] \begin{array}{r*{4}{cr}clcr|l} a^{3} & & & & &-& 3abc & & &+& b^{3} &+& c^{3} & a + b + c \\ \cline{14-14} a^{3} &+& a^{2}b &+& a^{2}c & & & & & & & & & \smash[b]{\begin{aligned}[t] a^{2} &- ab - ac \\ &+b^{2} - bc + c^{2} \end{aligned}} \\ \cline{1-13} &-& a^{2}b &-& a^{2}c &-& 3abc & & &+& b^{3} &+& \NoBar{c^{3}} \\ &-& a^{2}b &-& ab^{2} &-& abc \\ \cline{2-13} &-& a^{2}c &+& ab^{2} &-& 2abc & & &+& b^{3} &+& \NoBar{c^{3}} \\ &-& a^{2}c & & &-& abc &-& ac^{2} \\ \cline{2-13} & & & & ab^{2} &-& abc &+& ac^{2} &+& b^{3} &+& \NoBar{c^{3}} \\ & & & & ab^{2} & & & & &+& b^{3} &+& \NoBar{b^{2}c} \\ \cline{4-13} & & & & &-& abc &+& ac^{2} &-& b^{2}c&+& \NoBar{c^{3}} \\ & & & & &-& abc & & &-& b^{2}c&-& \NoBar{bc^{2}} \\ \cline{6-13} & & & & & & & & ac^{2} &+& bc^{2}&+& \NoBar{c^{3}} \\ & & & & & & & & ac^{2} &+& bc^{2}&+& \NoBar{c^{3}} \\ \cline{9-13} \end{array} \] %% -----File: 068.png---Folio 62------- \Exercise{24.} Divide: \begin{multicols}{2} \Item{1.} $x^{2} + 15x + 56$ by $x + 7$. \Item{2.} $x^{2} - 15x + 56$ by $x - 7$. \Item{3.} $x^{2} + x-56$ by $x - 7$. \Item{4.} $x^{2} - x-56$ by $x + 7$. \Item{5.} $2a^{2} + 11a + 5$ by $2a + 1$. \Item{6.} $6a^{2} - 7a-3$ by $2a - 3$. \Item{7.} $4a^{2} + 23a + 15$ by $4a + 3$. \Item{8.} $3a^{2} - 4a-4$ by $2 - a$. \Item{9.} $x^{4} + x^{2} + 1$ by $x^{2} + x + 1$. \Item{10.} $x^{8} + x^{4} + 1$ by $x^{4} - x^{2} + 1$. \Item{11.} $1 - a^{3}b^{3}$ by $1 - ab$. \Item{12.} $x^{3} - 8x-3$ by $x - 3$. \end{multicols} \Item{13.} $a^{2} - 2ab + b^{2} - c^{2}$ by $a - b - c$. \Item{14.} $a^{2} + 2ab + b^{2} - c^{2}$ by $a + b + c$. \Item{15.} $x^{2} - y^{2} + 2yz - z^{2}$ by $x - y + z$. \Item{16.} $c^{4} + 2c^{2} - c + 2$ by $c^{2} - c + 1$. \Item{17.} $x^{2} - 4y^{2} - 4yz - z^{2}$ by $x + 2y + z$. Arrange and divide: \Item{18.} $x^{3} - 6a^{3} + 11a^{2}x - 6ax^{2}$ by $x^{2} + 6a^{2} - 5ax$. \Item{19.} $a^{2} - 4b^{2} - 9c^{2} + 12bc$ by $a - 3c + 2b$. \Item{20.} $2a^{3} - 8a + a^{4} + 12-7a^{2}$ by $2 + a^{2} - 3a$. \Item{21.} $q^{4} + 6q^{3} + 4 + 12q + 13q^{2}$ by $3q + 2 + q^{2}$. \Item{22.} $27a^{3} - 8b^{3}$ by $3a - 2b$. Find the remainder when: \Item{23.} $a^{4} + 9a^{2} + 15-11a - 7a^{3}$ is divided by $a - 5$. \Item{24.} $7 - 8c^{2} + 5c^{3} + 8c$ is divided by $5c - 3$. \Item{25.} $3 + 11a^{3} + 30a^{4} - 82a^{2} - 5a$ is divided by $3a^{2} - 4 + 2a$. \Item{26.} $2x^{3} - 16x + 10-39x^{2} + 17x^{4}$ is divided by $2 - 5x^{2} - 4x$. %% -----File: 069.png---Folio 63------- \Exercise[Miscellaneous Examples.]{25.} \Item{1.} Add $2a^{2} - 3ac - 3ab$; $2b^{2} + 3ac + a^{2}$; $-a^{2} - 2b^{2} + 3ab$. \Item{2.} Subtract $3a^{4} - 2 a^{3}b + 4 a^{2}b^{2}$ from $4b^{4} - 2 ab^{3} + 4 a^{2}b^{2}$. \Item{3.} Simplify $x - y - \{z - x - (y - x + z)\}$. \Item{4.} Multiply $a^{2} + b^{2} + c^{2} - d^{2}$ by $a^{2} + b^{2} - c^{2} + d^{2}$. \Item{5.} Divide $10y^{6} + 2 - 12y^{5}$ by $1 + y^{2} - 2y$. \Item{6.} If $a = 1$, $b = 2$, and $c = -3$, find the value of $a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$. \Item{7.} Simplify $x - (y - z) - \bigl\{4y + [2y - (z - x)]\bigr\}$. \Item{8.} Multiply $a^{2} + b^{2} + c^{2} - ab - ac - bc$ by $a + b + c$. \Item{9.} Divide $16y^{4} - 21x^{2}y^{2} + 21x^{3}y - 10x^{4}$ by $4y^{2} - 5x^{2} + 3xy$. \Item{10.} Add $-2a^{4} + 3a^{3}b - 4a^{2}b^{2}$; $2a^{3}b - 3a^{2}b^{2}$; $7a^{2}b^{2} + 2a^{4} - b^{4}$. \Item{11.} From $3x^{3} + 5x - 1$ take the sum of $x - 5 + 5x^{2}$ and $3 + 4x -3x^{2}$. \Item{12.} The minuend is $9c^{2} + 11c - 5$, and the remainder is $6c^{2} - 13c + 7$. What is the subtrahend? \Item{13.} Find the remainder when $a^{4} + 6b^{4}$ is divided by $a^{2} + 2ab + 2b^{2}$. \Item{14.} Multiply $2 - 5x^{2} - 4x$ by $5 + 2x - 3x^{2}$. \Item{15.} Divide $a^{6} + a^{5}x + a^{4}x^{2} - a^{3}x^{3} + x^{6}$ by $a^{2} + ax + x^{2}$. Bracket the coefficients of the different powers of~$x$: \Item{16.} $ax^{3} - cx + bx^{2} - bx^{3} + cx^{2} - x$. \Item{17.} $ax^{4} - 2x + bx^{4} - cx - ax^{3} + bx^{3}$. \Item{18.} $x^{3} - bx^{2} - cx + bx - cx^{2} + ax^{3}$. %% -----File: 070.png---Folio 64------- \Chapter[Special Rules in Multiplication and Division.] {VI.}{Multiplication and Division.} \Section{Special Rules.} \Paragraph{92. Special Rules of Multiplication.} Some results of multiplication are of so great utility in shortening algebraic work that they should be carefully noticed and ed. The following are important: \Paragraph{93. Square of the Sum of Two Numbers.} \begin{align*} (a + b)^{2} &= (a + b)(a + b) \\ &= a(a + b) + b(a + b) \\ &= a^{2} + ab + ab + b^{2} \\ &= a^{2} + 2ab + b^{2}. \end{align*} Since $a$~and~$b$ stand for any two numbers, we have \begin{Theorem}[\textsc{Rule 1.}] The square of the sum of two numbers is the sum of their squares plus twice their product. \end{Theorem} \Paragraph{94. Square of the Difference of Two Numbers.} \begin{align*} (a - b)^{2} &= (a - b) (a - b) \\ &= a(a - b) - b(a - b) \\ &= a^{2} - ab - ab + b^{2} \\ &= a^{2} - 2ab + b^{2}. \end{align*} Hence we have \begin{Theorem}[\textsc{Rule 2.}] The square of the difference of two numbers is the sum of their squares minus twice their product. \end{Theorem} %% -----File: 071.png---Folio 65------- \Paragraph{95. Product of the Sum and Difference of Two Numbers.} \begin{align*} (a + b)(a - b) &= a(a - b) + b(a - b) \\ &= a^{2} - ab + ab - b^{2} \\ &= a^{2} - b^{2}. \end{align*} Hence, we have \begin{Theorem}[\textsc{Rule 3.}] The product of the sum and difference of two numbers is the difference of their squares. \end{Theorem} If we put $2x$~for~$a$, and $3$~for~$b$, we have \begin{DPalign*} \lintertext{\indent Rule 1,} &(2x + 3)^{2} = 4x^{2} + 12x + 9. \\ \lintertext{\indent Rule 2,} &(2x - 3)^{2} = 4x^{2} - 12x + 9. \\ \lintertext{\indent Rule 3,} &(2x + 3)(2x - 3) = 4x^{2} - 9. \end{DPalign*} \Exercise{26.} Write by inspection the value of: \begin{multicols}{2} \Item{1.} $(m + n)^{2}$. \Item{2.} $(c - a)^{2}$. \Item{3.} $(a + 2c)^{2}$. \Item{4.} $(3a - 2b)^{2}$. \Item{5.} $(2a + 3b)^{2}$. \Item{6.} $(a - 3b)^{2}$. \Item{7.} $(2x - y)^{2}$. \Item{8.} $(y - 2x)^{2}$. \Item{9.} $(a + 5b)^{2}$. \Item{10.} $(2a - 5c)^{2}$. \Item{11.} $(x + y)(x - y)$. \Item{12.} $(4a - b)(4a + b)$. \Item{13.} $(2b - 3c)(2b + 3c)$. \Item{14.} $(x + 5b)(x + 5b)$. \Item{15.} $(y - 2z)(y - 2z)$. \Item{16.} $(y + 3z)(y - 3z)$. \Item{17.} $(2a - 3b)(2a + 3b)$. \Item{18.} $(2a - 3b)(2a - 3b)$. \Item{19.} $(2a + 3b)(2a + 3b)$. \Item{20.} $(5x + 3a)(5x - 3a)$. \end{multicols} %% -----File: 072.png---Folio 66------- \Paragraph{96. Product of Two Binomials of the Form $x + a$, $x + b$.} The product of two binomials which have the form $x + a$, $x + b$, should be carefully noticed and ed. \begin{DPalign*} \lintertext{\Item{1.}} (x + 5)(x + 3) &= x(x + 3) + 5(x + 3) \\ &= x^{2} + 3x + 5x + 15 \\ &= x^{2} + 8x + 15. \displaybreak[1] \\ % \lintertext{\Item{2.}} (x - 5)(x - 3) &= x(x - 3) - 5(x - 3) \\ &= x^{2} - 3x - 5x + 15 \\ &= x^{2} - 8x + 15. \displaybreak[1] \\ % \lintertext{\Item{3.}} (x + 5)(x - 3) &= x(x - 3) + 5(x - 3) \\ &= x^{2} - 3x + 5x - 15 \\ &= x^{2} + 2x - 15. \displaybreak[1] \\ % \lintertext{\Item{4.}} (x - 5)(x + 3) &= x(x + 3) - 5(x + 3) \\ &= x^{2} + 3x - 5x - 15 \\ &= x^{2} - 2x - 15. \end{DPalign*} \Item{1.} Each of these results has three . \Item{2.} The first term of each result is the product of the first of the binomials. \Item{3.} The last term of each result is the product of the second of the binomials. \Item{4.} The middle term of each result has for a coefficient the \emph{algebraic sum} of the second of the binomials. \Paragraph{97.} The intermediate step given above may be omitted, and the products written at once by \emph{inspection}. Thus, \Item{1.} Multiply $x + 8$ by $x + 7$. \begin{align*} &8 + 7 = 15,\quad 8 × 7 = 56. \\ \therefore\ &(x + 8)(x + 7) = x^{2} + 15x + 56. \end{align*} %% -----File: 073.png---Folio 67------- \Item{2.} Multiply $x - 8$ by $x - 7$. \begin{align*} &(-8) + (-7) = -15,\quad (-8)(-7) = +56. \\ \therefore\ &(x - 8)(x - 7) = x^{2} - 15x + 56. \end{align*} \Item{3.} Multiply $x - 7y$ by $x + 6y$. \begin{align*} &-7 + 6 = -1,\quad (-7) × 6y = -42y^{2}. \\ \therefore\ &(x - 7y)(x + 6y) = x^{2} - xy - 42y^{2}. \end{align*} \Item{4.} Multiply $x + 6y$ by $x - 5y$. \begin{align*} &+6 - 5 = 1,\quad 6y × (-5y) = -30y^{2}. \\ \DPtypo{}{\therefore}\ &(x + 6y)(x - 5y) = x^{2} + xy - 30y^{2}. \end{align*} \Exercise{27.} Write by inspection the product of: \begin{multicols}{2} \Item{1.} $(x + 7)(x + 4)$. \Item{2.} $(x - 3)(x + 7)$. \Item{3.} $(x - 2)(x - 4)$. \Item{4.} $(x - 6)(x - 10)$. \Item{5.} $(x + 7)(x - 4)$. \Item{6.} $(x + a)(x - 2a)$. \Item{7.} $(x + 3a)(x - a)$. \Item{8.} $(a + 3c)(a + 3c)$. \Item{9.} $(a + 2x)(a - 4x)$. \Item{10.} $(a - 3b)(a - 4b)$. \Item{11.} $(a^{2} - c)(a^{2} + 2c)$. \Item{12.} $(x - 17)(x - 3)$. \Item{13.} $(x + 6y)(x - 5y)$. \Item{14.} $(3 + 2x)(3 - x)$. \Item{15.} $(5 + 2x)(1 - 2x)$. \Item{16.} $(a - 2b)(a + 3b)$. \Item{17.} $(a^{2}b^{2} - x^{2})(a^{2}b^{2} - 5x^{2})$. \Item{18.} $(a^{3}b - ab^{3})(a^{3}b + 5ab^{3})$. \Item{19.} $(x^{2}y - xy^{2})(x^{2}y - 3xy^{2})$. \Item{20.} $(x^{2}y + xy^{2})(x^{2}y + xy^{2})$. \Item{21.} $(x + a)(x + b)$. \Item{22.} $(x + a)(x - b)$. \Item{23.} $(x - a)(x + b)$. \Item{24.} $(x - a)(x - b)$. \Item{25.} $(x + 2a)(x + 2b)$. \Item{26.} $(x - 2a)(x + 2b)$. \Item{27.} $(x + 2a)(x - 2b)$. \Item{28.} $(x - 2a)(x - 2b)$. \Item{29.} $(x - a)(x + 3a)$. \Item{30.} $(x - 2a)(x + 3a)$. \end{multicols} %% -----File: 074.png---Folio 68------- \Paragraph{98. Special Rules of Division.} Some results in division are so important in abridging algebraic work that they should be carefully noticed and ed. \Paragraph{99. Difference of Two Squares.} Since $(a + b)(a - b) = a^{2} - b^{2}$, \[ \therefore \frac{a^{2} - b^{2}}{a + b} = a - b;\quad\text{and}\quad \frac{a^{2} - b^{2}}{a - b} = a + b. \EqText{Hence\Add{,}} \] \begin{Theorem}[\textsc{Rule 1.}] The difference of the squares of two numbers is divisible by the sum, and by the difference, of the numbers. \end{Theorem} \ScreenBreak \Exercise{28.} Write by inspection the quotient of: \begin{multicols}{3} \Item{1.} $\dfrac{x^{2} - 4}{x - 2}$. \Item{2.} $\dfrac{x^{2} - 4}{x + 2}$. \Item{3.} $\dfrac{a^{2} - 9}{a - 3}$. \Item{4.} $\dfrac{a^{2} - 9}{a + 3}$. \Item{5.} $\dfrac{c^{2} - 25}{c - 5}$. \Item{6.} $\dfrac{c^{2} - 25}{c + 5}$. \Item{7.} $\dfrac{49x^{2} - y^{2}}{7x - y}$. \Item{8.} $\dfrac{49x^{2} - y^{2}}{7x + y}$. \Item{9.} $\dfrac{9b^{2} - 1}{3b - 1}$. \Item{10.} $\dfrac{9b^{2} - 1}{3b + 1}$. \Item{11.} $\dfrac{16x^{4} - 25a^{2}}{4x^{2} - 5a}$. \Item{12.} $\dfrac{16x^{4} - 25a^{2}}{4x^{2} + 5a}$. \end{multicols} \begin{multicols}{2} \Item{13.} $\dfrac{9x^{2} - 25y^{2}}{3x - 5y}$. \Item{14.} $\dfrac{a^{2}-(b - c)^{2}}{a-(b - c)}$. \Item{15.} $\dfrac{a^{2}-(b - c)^{2}}{a + (b - c)}$. \Item{16.} $\dfrac{a^{2}-(2b - c)^{2}}{a-(2b - c)}$. \Item{17.} $\dfrac{(5a - 7b)^{2} - 1}{(5a - 7b) - 1}$. \Item{18.} $\dfrac{(5a - 7b)^{2} - 1}{(5a - 7b) + 1}$. \Item{19.} $\dfrac{z^{2}-(x - y)^{2}}{z-(x - y)}$. \Item{20.} $\dfrac{z^{2}-(x - y)^{2}}{z + (x - y)}$. %% -----File: 075.png---Folio 69------- \Item{21.} $\dfrac{a^{2}-(2b - c)^{2}}{a + (2b - c)}$. \Item{22.} $\dfrac{(x + 3y)^{2} - z^{2}}{(x + 3y) - z}$. \Item{23.} $\dfrac{(x + 3y)^{2} - z^{2}}{x + 3y + z}$. \Item{24.} $\dfrac{(a + 2b)^{2} - 4c^{2}}{(a + 2b) - 2c}$. \Item{25.} $\dfrac{(a + 2b)^{2} - 4c^{2}}{(a + 2b) + 2c}$. \Item{26.} $\dfrac{1 - (3x - 2y)^{2}}{1 + (3x - 2y)}$. \end{multicols} \Paragraph{100. Difference of Two Cubes.} By performing the division we have \[ \frac{a^{3} - b^{3}}{a - b} = a^{2} + ab + b^{2}. \EqText{Hence,} \] \begin{Theorem}[\textsc{Rule 2.}] The difference of the cubes of two numbers is divisible by the difference of the numbers, and the quotient is the sum of the squares of the numbers plus their product. \end{Theorem} \Exercise{29.} Write by inspection the quotient of: \begin{multicols}{3} \Item{1.} $\dfrac{1 - x^{3}}{1 - x}$. \Item{2.} $\dfrac{1 - 8a^{3}}{1 - 2a}$. \Item{3.} $\dfrac{1 - 27c^{3}}{1 - 2c}$. \Item{4.} $\dfrac{8a^{3} - b^{3}}{2a - b}$. \Item{5.} $\dfrac{64b^{3} - 27c^{3}}{4b - 3c}$. \Item{6.} $\dfrac{27x^{3} - 8y^{3}}{3x - 2y}$. \Item{7.} $\dfrac{x^{3}y^{3} - z^{3}}{xy - z}$. \Item{8.} $\dfrac{a^{3}b^{3} - 8}{ab - 2}$. \Item{9.} $\dfrac{125a^{3} - b^{3}}{5a - b}$. \Item{10.} $\dfrac{a^{3} - 8b^{3}}{a - 2b}$. \Item{11.} $\dfrac{a^{3} - 64}{a - 4}$. \Item{12.} $\dfrac{a^{9} - 27}{a^{3} - 3}$. \Item{13.} $\dfrac{a^{12} - x^{6}y^{6}}{a^{4} - x^{2}y^{2}}$. \Item{14.} $\dfrac{x^{15} - a^{9}b^{9}}{x^{5} - a^{3}b^{3}}$. \Item{15.} $\dfrac{27x^{3}y^{3} - z^{12}}{3xy - z^{4}}$. \Item{16.} $\dfrac{x^{3}y^{3}z^{3} - 1}{xyz - 1}$. \Item{17.} $\dfrac{8a^{3}b^{3}c^{3} - 27}{2abc - 3}$. \Item{18.} $\dfrac{1 - 64x^{3}y^{3}z^{3}}{1 - 4xyz}$. \end{multicols} %% -----File: 076.png---Folio 70------- \Paragraph{101. Sum of Two Cubes.} By performing the division, we find that \[ \frac{a^{3} + b^{3}}{a + b} = a^{2} - ab + b^{2}. \EqText{Hence,} \] \begin{Theorem}[\textsc{Rule 3.}] The sum of the cubes of two numbers is divisible by the sum of the numbers, and the quotient is the sum of the squares of the numbers minus their product. \end{Theorem} \Exercise{30.} Write by inspection the quotient of: \begin{multicols}{3} \Item{1.} $\dfrac{1 + x^{3}}{1 + x}$. \Item{2.} $\dfrac{1 + 8a^{3}}{1 + 2a}$. \Item{3.} $\dfrac{1 + 27c^{3}}{1 + 3c}$. \Item{4.} $\dfrac{8a^{3} + b^{3}}{2a + b}$. \Item{5.} $\dfrac{64b^{3} + 27c^{3}}{4b + 3c}$. \Item{6.} $\dfrac{27x^{3} + 8y^{3}}{3x + 2y}$. \Item{7.} $\dfrac{8x^{3} + 125y^{3}}{2x + 5y}$. \Item{8.} $\dfrac{x^{3}y^{3} + z^{3}}{xy + z}$. \Item{9.} $\dfrac{a^{3}b^{3} + 8}{ab + 2}$. \Item{10.} $\dfrac{125a^{3} + b^{3}}{5a + b}$. \Item{11.} $\dfrac{a^{3} + 8b^{3}}{a + 2b}$. \Item{12.} $\dfrac{a^{6} + 64}{a^{2} + 4}$. \Item{13.} $\dfrac{a^{9} + 27}{a^{3} + 3}$. \Item{14.} $\dfrac{8a^{6} + b^{3}}{2a^{2} + b}$. \Item{15.} $\dfrac{a^{12} + x^{6}y^{6}}{a^{4} + x^{2}y^{2}}$. \Item{16.} $\dfrac{x^{15} + a^{9}b^{9}}{x^{5} + a^{3}b^{3}}$. \Item{17.} $\dfrac{27x^{3}y^{3} + z^{12}}{3xy + z^{4}}$. \Item{18.} $\dfrac{x^{3}y^{3}z^{3} + 1}{xyz + 1}$. \Item{19.} $\dfrac{8a^{3}b^{3}c^{3} + 27}{2abc + 3}$. \Item{20.} $\dfrac{1 + 64x^{3}y^{3}z^{3}}{1 + 4xyz}$. \Item{21.} $\dfrac{1 + 27a^{6}b^{3}c^{3}}{1 + 3a^{2}bc}$. \end{multicols} Find by division the quotient of: \begin{multicols}{3} \Item{22.} $\dfrac{x^{4} - y^{4}}{x - y}$. \Item{23.} $\dfrac{x^{4} - y^{4}}{x + y}$. \Item{24.} $\dfrac{x^{5} - y^{5}}{x - y}$. \Item{25.} $\dfrac{x^{5} + y^{5}}{x + y}$. \Item{26.} $\dfrac{x^{6} - y^{6}}{x - y}$. \Item{27.} $\dfrac{x^{6} - y^{6}}{x + y}$. \end{multicols} %% -----File: 077.png---Folio 71------- \Chapter{VII.}{Factors.} \Paragraph{102. Rational Expressions.} An expression is \emph{rational} when none of its contain square or other roots. \Paragraph{103. Factors of Rational and Integral Expressions.} By factors of a given integral number in arithmetic we mean integral numbers that will divide the given number without remainder. Likewise by factors of a rational and integral expression in algebra we mean rational and integral expressions that will divide the given expression without remainder. \Paragraph{104. Factors of Monomials.} The factors of a monomial may be found by inspection. Thus, the factors of~$21a^{2}b$ are $3$, $7$, $a$, $a$, and~$b$. \Paragraph{105. Factors of Polynomials.} The form of a polynomial that can be resolved into factors often suggests the process of finding the factors. \Section{Case I.} \Paragraph{106. When all the have a common factor.} \Item{1.} Resolve into factors $3a^{2} - 6ab$. Since $3a$~is seen to be a factor of each term, we have \begin{align*} \frac{3a^{2} - 6ab}{3a} &= \frac{3a^{2}}{3a} - \frac{6ab}{3a} = a - 2b. \\ \therefore\ 3a^{2} - 6ab &= 3a(a - 2b). \end{align*} Hence, the required factors are $3a$~and~$a - 2b$. %% -----File: 078.png---Folio 72------- \Item{2.} Resolve into factors $4x^{3} + 12x^{2} - 8x$. Since $4x$ is seen to be a factor of each term, we have \begin{align*} \frac{4x^{3} + 12x^{2} - 8x}{4x} &= \frac{4x^{3}}{4x} + \frac{12x^{2}}{4x} - \frac{8x}{4x} \\ &= x^{2} + 3x - 2. \\ \therefore\ 4x^{3} + 12x^{2} - 8x &= 4x(x^{2} + 3x - 2). \end{align*} Hence the required factors are $4x$~and~$x^{2} + 3x - 2$. \Exercise{31.} Resolve into two factors: \begin{multicols}{2} \Item{1.} $2x^{2} - 4x$. \Item{2.} $3a^{3} - 6a$. \Item{3.} $5a^{2}b^{2} - 10a^{3}b^{3}$. \Item{4.} $3x^{2}y + 4xy^{2}$. \Item{5.} $8a^{3}b^{2} + 4a^{2}b^{3}$. \Item{6.} $3a^{4} - 12a^{2} - 6a^{3}$. \Item{7.} $4x^{2} - 8x^{4} - 12x^{5}$. \Item{8.} $5 - 10x^{2}y^{2} + 15x^{2}y$. \Item{9.} $7a^{2} + 14a - 21a^{3}$. \Item{10.} $3x^{3}y^{3} - 6x^{4}y^{4} - 9x^{2}y^{2}$. \end{multicols} \Section{Case II.} \Paragraph{107. When the can be grouped so as to show a common factor in each group.} \Item{1.} Resolve into factors $ac + ad + bc + bd$. \begin{align*} ac + ad + bc + bd &= (ac + ad) + (bc + bd) \Tag{(1)} \\ &= a(c + d) + b(c + d) \Tag{(2)} \\ &= (a + b)(c + d). \Tag{(3)} \end{align*} \begin{Remark}[Note.] The first two of $ac + ad + bc + bd$ are seen to have the common factor~$a$, and the last two , the common factor~$b$. Hence we bracket the first two and also the last two . Then we take out the factor~$a$ from $(ac + ad)$ and $b$~from $(bc + bd)$, and get equation~(2). Since one factor is seen in~(2) to be $c + d$, dividing by $c + d$, we obtain the other factor, $a + b$. \end{Remark} %% -----File: 079.png---Folio 73------- \Item{2.} Find the factors of $ac + ad - bc - bd$. \begin{align*} ac + ad - bc - bd &= (ac + ad) - (bc + bd) \\ &= a(c + d) - b(c + d) \\ &= (a - b)(c + d). \end{align*} \begin{Remark}[Note.] Here the last two , $-bc - bd$, being put within a parenthesis preceded by the sign~$-$, have their signs changed to~$+$. \end{Remark} \Item{3.} Resolve into factors $2x^{3} - 3x^{2} - 4x + 6$. \begin{align*} 2x^{3} - 3x^{2} - 4x + 6 &= (2x^{3} - 3x^{2}) - (4x - 6) \\ &= x^{2}(2x - 3) - 2(2x - 3) \\ &= (x^{2} - 2)(2x - 3). \end{align*} \Item{4.} Resolve into factors $x^{3} + x^{2} - ax - a$. \begin{align*} x^{3} + x^{2} - ax - a &= (x^{3} + x^{2}) - (ax + a) \\ &= x^{2}(x + 1) - a(x + 1) \\ &= (x^{2} - a)(x + 1). \end{align*} \Item{5.} Resolve into factors $x^{3} + 3ax^{2} + x + 3a$. \begin{align*} x^{3} + 3ax^{2} + x + 3a &= (x^{3} + 3ax^{2}) + (x + 3a) \\ &= x^{2}(x + 3a) + 1(x + 3a) \\ &= (x^{2} + 1)(x + 3a). \end{align*} \Exercise{32.} Resolve into factors: \begin{multicols}{2} \Item{1.} $x^{3} + x^{2} + x + 1$. \Item{2.} $x^{3} - x^{2} + x - 1$. \Item{3.} $x^{2} + xy + xz + yz$. \Item{4.} $ax - bx - ay + by$. \Item{5.} $a^{2} - ac + ab - bc$. \Item{6.} $x^{2} - bx + 3x - 3b$. \Item{7.} $2x^{3} - x^{2} + 4x - 2$. \Item{8.} $a^{2} - 3a - ab + 3b$. \Item{9.} $6a^{2} + 2ab - 3ac - bc$. \Item{10.} $abxy + cxy + abc + c^{2}$. \Item{11.} $ax - ay - bx + cy - cx + by$. \Item{12.} $(a - b)^{2} - 2c(a - b)$. \end{multicols} %% -----File: 080.png---Folio 74------- \Section{Case III.} \Paragraph{108. When a binomial is the difference of two squares.} \Item{1.} Resolve into factors $x^{2} - y^{2}$. \begin{DPgather*} \lintertext{\indent Since,} (x + y)(x - y) = x^{2} - y^{2}, \end{DPgather*} the factors of $x^{2} - y^{2}$ are $x + y$ and~$x - y$. \Dictum{To find the factors of a binomial when it is the difference of two squares}, therefore, \begin{Theorem} Take the square root of the first term and the square root of the second term. The sum of these roots will form the first factor; The difference of these roots will form the second factor. \end{Theorem} \Paragraph{109.} The \Defn{square root} of a \emph{monomial} is one of the \textbf{two equal factors} of the monomial. Thus $9x^{8}y^{2} = 3x^{4}y × 3x^{4}y$; and $3x^{4}y$ is the square root of~$9x^{8}y^{2}$. The rule for extracting the square root of a \emph{monomial, when a perfect square}, is as follows: \begin{Theorem} Extract the square root of the coefficient, and divide the index of each letter by~$2$. \end{Theorem} \Exercise{33.} Resolve into factors: \begin{multicols}{3} \Item{1.} $4 - x^{2}$. \Item{2.} $9 - x^{2}$. \Item{3.} $9a^{2} - x^{2}$. \Item{4.} $25 - x^{2}$. \Item{5.} $25x^{2} - a^{2}$. \Item{6.} $16a^{4} - 121$. \Item{7.} $121a^{4} - 16$. \Item{8.} $4a^{2}b^{2} - c^{2}d^{2}$. \Item{9.} $1 - x^{2}y^{2}$. \Item{10.} $81x^{2}y^{2} - 1$. \Item{11.} $49a^{2}b^{2} - 4$. \Item{12.} $25a^{4}b^{4} - 9$. \end{multicols} %% -----File: 081.png---Folio 75------- \begin{multicols}{2} \Item{13.} $9a^{8}b^{6} - 16x^{10}$. \Item{14.} $144x^{2}y^{2} - 1$. \Item{15.} $100x^{6}y^{2}z^{4} - 1$. \Item{16.} $1 - 121a^{4}b^{8}c^{12}$. \Item{17.} $25a^{2} - 64x^{6}y^{6}$. \Item{18.} $16x^{16}-25y^{18}$. \end{multicols} Find, by resolving into factors, the value of: \begin{multicols}{2} \Item{19.} $(375)^{2} - (225)^{2}$. \Item{20.} $(579)^{2} - (559)^{2}$. \Item{21.} $(873)^{2} - (173)^{2}$. \Item{22.} $(101)^{2} - (99)^{2}$. \Item{23.} $(7244)^{2} - (7242)^{2}$. \Item{24.} $(3781)^{2} - (219)^{2}$. \end{multicols} \Paragraph{110.} If the squares are compound expressions, the same method may be employed. \Item{1.} Resolve into factors $(x + 3y)^{2} - 16a^{2}$. \begin{Soln} The square root of the first term is~$x + 3y$. The square root of the second term is~$4a$. The sum of these roots is~$x + 3y - 4a$. The difference of these roots is $x + 3y - 4a$. Therefore $(x + 3y)^{2} - 16a^{2} = (x + 3y + 4a)(x + 3y - 4a)$. \end{Soln} \Item{2.} Resolve into factors $a^{2} - (3b - 5c)^{2}$. \begin{Soln} The square roots of the are $a$~and~$(3b - 5c)$. The sum of these roots is $a + (3b - 5c)$, or $a + 3b - 5c$. The difference of these roots is $a - (3b - 5c)$, or $a - 3b + 5c$. Therefore $a^{2} - (3b - 5c)^{2} = (a + 3b - 5c)(a - 3b + 5c)$. \end{Soln} \Exercise{34.} \DPtypo{}{Resolve into factors:} \begin{multicols}{2} \Item{1.} $(x + y)^{2} - z^{2}$. \Item{2.} $(x - y)^{2} - z^{2}$. \Item{3.} $z^{2} - (x + y)^{2}$. \Item{4.} $z^{2} - (x - y)^{2}$. \Item{5.} $(x + y)^{2} - 4z^{2}$. \Item{6.} $4z^{2} - (x - y)^{2}$. \Item{7.} $(a + 2b)^{2} - c^{2}$. \Item{8.} $(a - 2b)^{2} - c^{2}$. \Item{9.} $c^{2} - (a - 2b)^{2}$. \Item{10.} $(2a + 5c)^{2} - 1$. %% -----File: 082.png---Folio 76------- \Item{11.} $1 - (2a - 5c)^{2}$. \Item{12.} $(a + 3b)^{2} - 16c^{2}$. \Item{13.} $(a - 5b)^{2} - 9c^{2}$. \Item{14.} $16c^{2} - (a - 5b)^{2}$. \Item{15.} $4a^{2} - (x + y)^{2}$. \Item{16.} $b^{2} - (a - 2x)^{2}$. \Item{17.} $4z^{2} - (x + 3y)^{2}$. \Item{18.} $9 - (3a - 7b)^{2}$. \Item{19.} $16a^{2} - (2b + 5c)^{2}$. \Item{20.} $25c^{2} - (3a - 2x)^{2}$. \Item{21.} $9a^{2} - (3b - 5c)^{2}$. \Item{22.} $16y^{2} - (a - 3c)^{2}$. \Item{23.} $49m^{2} - (p + 2q)^{2}$. \Item{24.} $36n^{2} - (d - 2c)^{2}$. \Item{25.} $(x + y)^{2} - (a + b)^{2}$. \Item{26.} $(x - y)^{2} - (a - b)^{2}$. \Item{27.} $(2x + 3)^{2} - (2a + b)^{2}$. \Item{28.} $(b - c)^{2} - (a - 2x)^{2}$. \Item{29.} $(3x - y)^{2} - (2a - b)^{2}$. \Item{30.} $(x - 3y)^{2} - (a + 2b)^{2}$. \Item{31.} $(x + 2y)^{2} - (a + 3b)^{2}$. \Item{32.} $(x + y)^{2} - (a - z)^{2}$. \end{multicols} \Section{Case IV.} \Paragraph{111. When a binomial is the difference of two cubes.} \begin{DPgather*} \lintertext{\indent Since} \frac{a^{3} - b^{3}}{a - b} = a^{2} + ab + b^{2}, \end{DPgather*} the factors of $a^{3} - b^{3}$ are $a - b$ and $a^{2} + ab + b^{2}$. In like manner we can resolve into factors any expression which can be written as the difference of two cubes. \Paragraph{112.} The rule for extracting the cube root of a \emph{monomial, when the monomial is a perfect cube}, is, \begin{Theorem} Extract the cube root of the coefficient, and divide the index of each letter by~$3$. \end{Theorem} \ScreenBreak \Item{1.} Resolve into factors $8a^{3} - 27b^{6}$. Since $8a^{3} = (2a)^{3}$, and $27b^{6} = (3b^{2})^{3}$, we can write $8a^{3} - 27b^{6}$ as $(2a)^{3} - (3b^{2})^{3}$. %% -----File: 083.png---Folio 77------- \begin{DPgather*} \lintertext{\indent Since} a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}), \end{DPgather*} we have, by putting $2a$ for~$a$ and $3b^{2}$ for~$b$, \begin{align*} (2a)^{3} - (3b^{2})^{3} &= (2a - 3b^{2})[(2a)^{2} + 2a × 3b^{2} + (3b^{2})^{2}] \\ &= (2a - 3b^{2})(4a^{2} + 6ab^{2} + 9b^{4}). \end{align*} \Item{2.} Resolve into factors $64x^{3} - 1$. \begin{align*} 64x^{3} - 1 &= (4x)^{3} - 1 \\ &= (4x - 1)[(4x)^{2} + 4x +1] \\ &= (4x - 1)(16x^{2} + 4x + 1). \end{align*} \Dictum{To find the factors of a binomial when it is the difference of two cubes}, therefore, \begin{Theorem} Take the difference of the cube roots of the for one factor, and the sum of the squares of the cube roots of the plus their product for the other factor. \end{Theorem} \ScreenBreak \Exercise{35.} Resolve into factors: \begin{multicols}{3} \Item{1.} $8x^{3} - y^{3}$. \Item{2.} $x^{3} - 1$. \Item{3.} $x^{3}y^{3} - z^{3}$. \Item{4.} $x^{3} - 64$. \Item{5.} $125a^{3} - b^{3}$. \Item{6.} $a^{3} - 343$. \Item{7.} $a^{3}b^{3} - 27c^{3}$. \Item{8.} $x^{3}y^{3}z^{3} - 8$. \Item{9.} $8a^{3}b^{3} - 27y^{6}$. \Item{10.} $64x^{3} - y^{9}$. \Item{11.} $27a^{3} - 64c^{6}$. \Item{12.} $x^{3}y^{3} - 216z^{3}$. \Item{13.} $64x^{3} - 729y^{3}$. \Item{14.} $27a^{3} - 512c^{3}$. \Item{15.} $8x^{6} - 125y^{3}$. \Item{16.} $64x^{12} - 27y^{15}$. \Item{17.} $216 - 8a^{3}$. \Item{18.} $343 - 27y^{3}$. \end{multicols} \Section{Case V.} \Paragraph{113. When a binomial is the sum of two cubes.} \begin{DPgather*} \lintertext{\indent Since} \frac{a^{3} + b^{3}}{a + b} = a^{2} - ab + b^{2}, \end{DPgather*} the factors of $a^{3} + b^{3}$ are $a + b$ and $a^{2} - ab + b^{2}$. %% -----File: 084.png---Folio 78------- In like manner we can resolve into factors any expression which can be written as the sum of two cubes. \Item{1.} Resolve into factors $8x^{3} + 27y^{3}$. Since by §~112, $8x^{3} = (2x)^{3}$ and $27y^{3} = (3y)^{3}$, we can write $8x^{3} + 27y^{3}$ as $(2x)^{3} + (3y)^{3}$. \begin{DPgather*} \lintertext{\indent Since} a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2}), \end{DPgather*} we have, by putting $2x$ for~$a$, and $3y$ for~$b$, \begin{align*} (2x)^{3} + (3y)^{3} &= (2x + 3y)[(2x)^{2} - 2x × 3y + (3y)^{2}] \\ &= (2x + 3y)(4x^{2} - 6xy + 9y^{2}). \end{align*} \Item{2.} Resolve into factors $125a^{3} + 64x^{6}$\Add{.} \begin{gather*} 125a^{3} = (5a)^{3},\quad 64x^{6} = (4x^{2})^{3}; \\ \begin{aligned} \therefore 125a^{3} + 64x^{6} &= (5a + 4x^{2})[(5a)^{2} - 5a × 4x^{2} + (4x^{2})^{2}] \\ &= (5a + 4x^{2})(25a^{2} - 20ax^{2} + 16x^{4}) \end{aligned} \end{gather*} \Dictum{To find the factors of a binomial when it is the sum of two cubes}, therefore, \begin{Theorem} Take the sum of the cube roots of the for one factor, and the sum of the squares of the cube roots of the minus their product for the other factor. \end{Theorem} \PrintBreak \Exercise{36.} Resolve into factors: \begin{multicols}{3} \Item{1.} $x^{3} + 1$. \Item{2.} $8x^{3} + y^{3}$. \Item{3.} $x^{3} + 125$. \Item{4.} $64a^{3} + 27$. \Item{5.} $x^{3}y^{3} + z^{3}$. \Item{6.} $a^{3} + 64$. \Item{7.} $8a^{6} + b^{3}$. \Item{8.} $x^{3} + 343$. \Item{9.} $8 + x^{3}y^{3}z^{3}$. \Item{10.} $y^{9} + 64x^{3}$. \Item{11.} $a^{3}b^{3} + 27x^{3}$. \Item{12.} $8y^{3}z^{3} + x^{6}$. \Item{13.} $y^{9} + 64x^{6}$. \Item{14.} $64a^{12} + x^{15}$. \Item{15.} $27x^{15} + 8a^{6}$. \Item{16.} $27x^{9} + 512$. \Item{17.} $343 + 64x^{3}$. \Item{18.} $125 + 27y^{3}$. \end{multicols} %% -----File: 085.png---Folio 79------- \Section{Case VI.} \Paragraph{114. When a trinomial is a perfect square.} \begin{DPgather*} \lintertext{\indent Since} (x + y)^{2} = x^{2} + 2xy + y^{2}, \end{DPgather*} the factors of $x^{2} + 2xy + y^{2}$ are $x + y$ and $x + y$. \begin{DPgather*} \lintertext{\indent Since} (x - y)^{2} = x^{2} - 2xy + y^{2}, \end{DPgather*} the factors of $x^{2} - 2xy + y^{2}$ are $x - y$ and $x - y$. Therefore, a trinomial is a perfect square, if its first and last are perfect squares and positive, and its middle term is twice the product of their square roots. \Dictum{To find the factors of a trinomial when it is a perfect square}, therefore, \begin{Theorem} Extract the square roots of the first and last , and connect these square roots by the sign of the middle term. \end{Theorem} Thus, if we wish to find the square root of \[ 16a^{2} - 24ab + 9b^{2}, \] we take the square roots of $16a^{2}$ and $9b^{2}$, which are $4a$ and~$3b$, respectively, and connect these square roots by the minus sign, the sign of the middle term. The square root is therefore \[ 4a - 3b. \] Again, if we wish to find the square root of \[ 25x^{2} + 40xy + 16y^{2}, \] we take the square roots of $25x^{2}$ and $16y^{2}$ and connect these roots by the plus sign, the sign of the middle term. The square root is therefore \[ 5x + 4y. \] %% -----File: 086.png---Folio 80------- \Exercise{37.} Resolve into factors: \begin{multicols}{2} \Item{1.} $4x^{2} + 4xy + y^{2}$. \Item{2.} $x^{2} + 6xy + 9y^{2}$. \Item{3.} $x^{2} + 16x + 64$. \Item{4.} $x^{2} + 10ax + 25a^{2}$. \Item{5.} $a^{2} - 16a + 64$. \Item{6.} $a^{2} - 10ab + 25b^{2}$. \Item{7.} $c^{2} - 6cd + 9d^{2}$. \Item{8.} $4x^{2} - 4x + 1$. \Item{9.} $4a^{2} - 12ab + 9b^{2}$. \Item{10.} $9a^{2} - 24ab + 16b^{2}$. \Item{11.} $x^{2} + 8xy + 16y^{2}$. \Item{12.} $x^{2} - 8xy + 16y^{2}$. \Item{13.} $4x^{2} - 20xy + 25y^{2}$. \Item{14.} $1 + 20a + 100a^{2}$. \Item{15.} $49a^{2} - 28a + 4$. \Item{16.} $36a^{2} + 60ab + 25b^{2}$. \Item{17.} $81x^{2} - 36bx + 4b^{2}$. \Item{18.} $m^{2}n^{2} + 14mnx^{2} + 49x^{2}$. \end{multicols} \PrintBreak \Section{Case VII.} \Paragraph{115. When a trinomial has the form $x^{2} + ax + b$.} Where $a$ is the \emph{algebraic sum} of two numbers, and is either positive or negative; and $b$~is the \emph{product} of these two numbers, and is either positive or negative. \begin{DPgather*} \lintertext{\indent Since} (x + 5)(x + 3) = x^{2} + 8x + 15, \end{DPgather*} the factors of $x^{2} + 8x + 15$ are $x + 5$ and $x + 3$. \begin{DPgather*} \lintertext{\indent Since} (x + 5)(x - 3) = x^{2} + 2x- 15, \end{DPgather*} the factors of $x^{2} + 2x - 15$ are $(x + 5)$ and $(x - 3)$. Hence, if a trinomial of the form $x^{2} + ax + b$ is such an expression that it can be resolved into two binomial factors, it is obvious that the first term of each factor will be~$x$, and that the second of the factors will be two numbers whose product is~$b$, the last term of the trinomial, and whose algebraic sum is~$a$, the coefficient of~$x$ in the middle term of the trinomial. %% -----File: 087.png---Folio 81------- \Item{1.} Resolve into factors $x^{2} + 11x + 30$. \begin{Soln} We are required to find two numbers whose product is~$30$ and whose sum is~$11$. Two numbers whose product is $30$ are $1$~and~$30$, $2$~and~$15$, $3$~and~$10$, $5$~and~$6$, and the sum of the last two numbers is~$11$. Hence, \[ x^{2} + 11x + 30 = (x + 5)(x + 6). \] %[** TN: Solutions sometimes printed in normal-size type; using smaller type] \end{Soln} \Item{2.} Resolve into factors $x^{2} - 7x + 12$. \begin{Soln} We are required to find two numbers whose product is~$12$ and whose algebraic sum is~$-7$. Since the product is~$+12$, the two numbers are \emph{both positive} or \emph{both negative}, and since their sum is~$-7$, they must both be negative. Two negative numbers whose product is~$12$ are $-12$~and~$-1$, $-6$ and~$-2$, $-4$~and~$-3$, and the sum of the last two numbers is~$-7$. Hence, \[ x^{2} - 7x + 12 = (x - 4)(x - 3). \] \end{Soln} \Item{3.} Resolve into factors $x^{2} + 2x - 24$. \begin{Soln} We are required to find two numbers whose product is~$-24$ and whose algebraic sum is~$2$. Since the product is~$-24$, one of the numbers is positive and the other negative, and since their sum is~$+2$, the larger number is positive. Two numbers whose product is~$-24$, and the larger number positive, are $24$~and~$-1$, $12$~and~$-2$, $8$~and~$-3$, $6$~and~$-4$, and the sum of the last two numbers is~$+2$. Hence, \[ x^{2} + 2x - 24 = (x + 6)(x - 4). \] \end{Soln} \Item{4.} Resolve into factors $x^{2} - 3x - 18$. \begin{Soln} Since the product is~$-18$, one of the numbers is positive and the other negative, and since their sum is~$-3$, the larger number is negative. Two numbers whose product is~$-18$, and the larger number negative, are $-18$~and~$1$, $-9$~and~$2$, $-6$~and~$3$, and the sum of the last two numbers is~$-3$. Hence, \[ x^{2} - 3x - 18 = (x - 6)(x + 3). \] \end{Soln} %% -----File: 088.png---Folio 82------- \Exercise{38.} Resolve into factors: \begin{multicols}{2} \Item{1.} $a^{2} + 5a + 6$. \Item{2.} $a^{2} - 5a + 6$. \Item{3.} $a^{2} + 6a + 5$. \Item{4.} $a^{2} - 6a + 5$. \Item{5.} $a^{2} + 4a - 5$. \Item{6.} $a^{2} - 4a - 5$. \Item{7.} $c^{2} - 9c + 18$. \Item{8.} $c^{2} + 9c + 18$. \Item{9.} $c^{2} + 3c - 18$. \Item{10.} $c^{2} - 3c - 18$. \Item{11.} $x^{2} + 9x + 14$. \Item{12.} $x^{2} - 9x + 14$. \Item{13.} $x^{2} - 5x - 14$. \Item{14.} $x^{2} - 9x + 20$. \Item{15.} $x^{2} - x - 20$. \Item{16.} $x^{2} + x - 20$. \Item{17.} $x^{2} - 10x + 21$. \Item{18.} $x^{2} - 4x - 21$. \Item{19.} $x^{2} + 4x - 21$. \Item{20.} $x^{2} - 15x + 56$. \Item{21.} $x^{2} - x - 56$. \Item{22.} $x^{2} - 10x + 9$. \Item{23.} $x^{2} + 13x + 30$. \Item{24.} $x^{2} + 7x - 30$. \Item{25.} $x^{2} - 7x - 30$. \Item{26.} $a^{2} + ab - 6b^{2}$. \Item{27.} $a^{2} - ab - 6b^{2}$. \Item{28.} $a^{2} + 3ab - 4b^{2}$. \Item{29.} $a^{2} - 3ab - 4b^{2}$. \Item{30.} $a^{2}x^{2} - 2ax - 63$. \Item{31.} $a^{2} + 2ax - 63x^{2}$. \Item{32.} $a^{2} - 9ab + 20b^{2}$. \Item{33.} $x^{2}y^{2} - 19xyz + 48z^{2}$. \Item{34.} $a^{2}b^{2} + 15abc + 44c^{2}$. \Item{35.} $x^{2} - 13xy + 36y^{2}$. \Item{36.} $x^{2} + 19xy + 84y^{2}$. \Item{37.} $a^{2}x^{2} - 23axy + 102y^{2}$. \Item{38.} $x^{4} - 9x^{2}y^{2} + 20y^{4}$. \Item{39.} $a^{4}x^{4} - 24a^{2}x^{2}y^{2} + 143y^{4}$. \Item{40.} $a^{6}b^{6} - 23a^{3}b^{3}c^{2} + 132c^{4}$. \Item{41.} $a^{2} - 20abc - 96b^{2}c^{2}$. \Item{42.} $a^{2} - 4abc - 96b^{2}c^{2}$. \Item{43.} $a^{2} - 10abc - 96b^{2}c^{2}$. \Item{44.} $a^{2} + 29abc - 96b^{2}c^{2}$. \Item{45.} $a^{2} - 46abc - 96b^{2}c^{2}$. \Item{46.} $a^{2} + 49abc + 48b^{2}c^{2}$. \Item{47.} $x^{2} - 18xyz - 243y^{2}z^{2}$. \Item{48.} $x^{2}y^{2} - xyz - 182z^{2}$. \end{multicols} %% -----File: 089.png---Folio 83------- \Exercise{39.} \Section{Examples For Review.} Resolve into factors: \begin{multicols}{2} \Item{1.} $a^{3} - 7a$. \Item{2.} $3a^{2}b^{2} - 2a^{3}b + 3ab^{3}$. \Item{3.} $(a - b)^{2} + (a - b)$. \Item{4.} $(a + b)^{2} - 1$. \Item{5.} $a^{3} + 8b^{3}$. \Item{6.} $(x^{2} - 4y^{2}) + (x - 2y)$. \Item{7.} $(a^{3} - b^{3}) + (a - b)$. \Item{8.} $a^{2} - 6ab + 9b^{2}$. \Item{9.} $x^{2} - x -2$. \Item{10.} $x^{2} - 2x - 3$. \Item{11.} $x^{2} + 4x - 21$. \Item{12.} $a^{2} - 11a - 26$. \Item{13.} $ax^{2} + bx^{2} + 3a + 3b$. \Item{14.} $x^{2} - 3x- xy + 3y$. \Item{15.} $x^{2} - 7x + 12$. \Item{16.} $a^{2} + 5ab + 6b^{2}$. \Item{17.} $x^{4} + 10x^{2} + 25$. \Item{18.} $x^{2} - 18x + 81$. \Item{19.} $x^{2} - 21x + 110$. \Item{20.} $x^{2} + 19x + 88$. \Item{21.} $x^{2} - 19x + 88$. \Item{22.} $x^{3} - x^{2} + x - 1$. \Item{23.} $9x^{4} - x^{2}$. \Item{24.} $1 - (a - b)^{2}$. \Item{25.} $(a^{3} + b^{3}) + (a + b)$. \Item{26.} $m^{2}x - n^{2}x + m^{2}y - n^{2}y$. \Item{27.} $(x - y)^{2} - z^{2}$. \Item{28.} $z^{2} - (x - y)^{2}$. \Item{29.} $4a^{4} - (3a - 1)^{2}$. \Item{30.} $8x^{3} - y^{3}$. \Item{31.} $x^{3} - 3x^{2}y$. \Item{32.} $x^{3} - 27y^{3}$. \Item{33.} $x^{2} + 3x - 40$. \Item{34.} $x^{2} + 3xy - 10y^{2}$. \Item{35.} $1 - 16x^{2}$. \Item{36.} $a^{6} - 9a^{2}b^{4}$. \Item{37.} $x^{3} + 3x^{2}y + 2xy^{2}$. \Item{38.} $x^{4} + 4x^{3}y + 3x^{2}y^{2}$. \Item{39.} $x^{2} - 4xy^{2} + 4y^{4}$. \Item{40.} $16x^{4} + 8x^{2} + 1$. \Item{41.} $9a^{4} - 4a^{2}c^{2}$. \Item{42.} $a^{3}b - a^{2}b^{2} - 2ab^{3}$. \Item{43.} $x^{4} - x^{3} + 8x - 8$. \Item{44.} $a^{4} - a^{3}x + ay^{3} - xy^{3}$. \end{multicols} %% -----File: 090.png---Folio 84------- \Chapter{VIII.}{Common Factors and Multiples.} \Paragraph{116. Common Factors.} A \Defn{common factor} of two or more \emph{integral numbers} is an integral number which divides each of them without a remainder. \Paragraph{117.} A \Defn{common factor} of two or more integral and rational \emph{expressions} is an integral and rational expression which divides each of them without a remainder. \begin{Remark} Thus $5a$~is a common factor of $20a$~and~$25a$, $3x^{2}y^{2}$ is a common factor of~$12x^{2}y^{2}$ and~$15x^{3}y^{3}$. \end{Remark} \Paragraph{118.} Two \emph{numbers} are said to be \Defn{prime} to each other when they have no common factor except~$1$. \Paragraph{119.} Two \emph{expressions} are said to be \Defn{prime} to each other when they have no common factor except~$1$. \Paragraph{120.} The \Defn{highest common factor} of two or more integral \emph{numbers} is the greatest number that will divide each of them without a remainder. \Paragraph{121.} The \Defn{highest common factor} of two or more integral and rational \emph{expressions} is an integral and rational expression of highest degree that will divide each of them without a remainder. \begin{Remark} Thus $3a^{2}$ is the highest common factor of $3a^{2}$, $6a^{3}$, and~$12a^{4}$, $5x^{2}y^{2}$ is the highest common factor of $10x^{3}y^{2}$ and~$15x^{2}y^{2}$. \end{Remark} For brevity, we use \HCF\ for ``highest common factor.'' %% -----File: 091.png---Folio 85------- \Paragraph{122. To Find the Highest Common Factor of Two or More Algebraic Expressions.} \Item{1.} Find the \HCF\ of $42a^{3}b^{2}$ and~$30a^{2}b^{4}$. \begin{alignat*}{2} &42a^{3}b^{2} &&= 2 × 3 × 7 × aaa × bb; \\ &30a^{2}b^{4} &&= 2 × 3 × 5 × aa × bbbb. \\ \therefore\ &\text{the \HCF} &&= 2 × 3 × aa × bb, \quad\text{or}\quad 6a^{2}b^{2}. \end{alignat*} \Item{2.} Find the \HCF\ of $x^{2} - 9y^{2}$ and $x^{2} + 6xy + 9y^{2}$. \begin{alignat*}{2} &x^{2} - 9y^{2} &&= (x + 3y)(x - 3y); \\ &x^{2} + 6xy + 9y^{2} &&= (x + 3y)(x + 3y). \\ \therefore\ &\text{the \HCF} &&= (x + 3y). \end{alignat*} \Item{3.} Find the \HCF\ of $4x^{2} - 4x - 80$, $2x^{2} - 18x + 40$. \begin{alignat*}{3} &4x^{2} -& 4x &- 80 &&= 4(x^{2} - x-20) \\ &&& &&= 4(x - 5)(x + 4); \\ &2x^{2} -& 18x &+ 40 &&= 2(x^{2} - 9x + 20) \\ &&& &&= 2(x - 5)(x - 4). \\ \therefore\ &\rlap{\text{the \HCF}} &&&&= 2(x - 5). \end{alignat*} \Dictum{To find the \HCF\ of two or more expressions}, therefore, \begin{Theorem} Resolve each expression into its simplest factors. Find the product of all the common factors, taking each factor the least number of times it occurs in any of the given expressions. \end{Theorem} \begin{Remark}[Note.] The \emph{highest common factor} in Algebra corresponds to the \emph{greatest common measure}, or \emph{greatest common divisor} in Arithmetic. We cannot apply the \emph{greatest} and \emph{least} to an algebraic expression in which particular values have not been given to the letters contained in the expression. Thus $a$~is \emph{greater} than~$a^{2}$, if $a$~stands for~$\frac{1}{4}$. \end{Remark} %% -----File: 092.png---Folio 86------- \Exercise{40.} Find the \HCF\ of: \begin{multicols}{2} \Item{1.} $330$ and $546$. \Item{2.} $20x^{3}$ and $15x^{4}$. \Item{3.} $42ax^{2}$ and $60a^{2}x$. \Item{4.} $35a^{2}b^{2}$ and $49ab^{3}$. \Item{5.} $28x^{4}$ and $63y^{4}$. \Item{6.} $54a^{2}b^{2}$ and $56a^{3}b^{3}$. \Item{7.} $x^{3} + 3x^{2}y$ and $x^{3} + 27y^{3}$. \Item{8.} $x^{2} + 3x$ and $x^{2} - 9$. \Item{9.} $2ax^{3} + x^{3}$ and $8a^{3} + 1$. \Item{10.} $(x + y)^{2}$ and $x^{2} - y^{2}$. \Item{11.} $a^{3} + a^{2}x$ and $a^{2} - x^{2}$. \Item{12.} $a^{2} - 4b^{2}$ and $a^{2} + 2ab$. \end{multicols} \Item{13.} $x^{2} - 1$ and $x^{2} + 2x - 3$. \Item{14.} $x^{2} + 5x + 6$ and $x^{2} + 4x + 3$. \Item{15.} $x^{2} - 9x + 18$ and $x^{2} - 10x + 24$. \Item{16.} $x^{3} + 1$ and $x^{2} - x + 1$. \Item{17.} $x^{2} - 3x + 2$ and $x^{2} - 4x + 3$. \Item{18.} $x^{2} - 3xy + 2y^{2}$ and $x^{2} - 2xy + y^{2}$. \Item{19.} $x^{2} - 4x - 5$ and $x^{2} - 25$. \Item{20.} $(a - b)^{2} - c^{2}$ and $ab - b^{2} - bc$. \Item{21.} $x^{2} + xy -2y^{2}$ and $x^{2} + 5xy + 6y^{2}$. \Item{22.} $x^{2} + 7xy + 12y^{2}$ and $x^{2} + 3xy - 4y^{2}$. \Item{23.} $x^{3} - 8y^{3}$ and $x^{2} + 2xy + 4y^{2}$. \Item{24.} $x^{3} - 2x^{2} - x + 2$ and $x^{2} - 4x + 4$. \Item{25.} $1 - 5a + 6a^{2}$ and $1 - 7a + 12a^{2}$. \Item{26.} $x^{2} - 8xy + 7y^{2}$ and $x^{2} - 3xy - 28y^{2}$. \Item{27.} $8a^{3} + b^{3}$ and $4a^{2} + 4ab + b^{2}$. \Item{28.} $x^{2} - (y - z)^{2}$ and $(x + y)^{2} - z^{2}$. %% -----File: 093.png---Folio 87------- \Paragraph{123. Common Multiples.} A \Defn{common multiple} of two or more integral \emph{numbers} is a number which is exactly divisible by each, of the numbers. A \Defn{common multiple} of two or more \emph{expressions} is an expression which is exactly divisible by each of the expressions. \Paragraph{124.} The \Defn{lowest common multiple} of two or more \emph{numbers} is the least number that is exactly divisible by each of the given numbers. The \Defn{lowest common multiple} of two or more \emph{expressions} is the expression of lowest degree that is exactly divisible by each of the given expressions. We use \LCM\ for ``lowest common multiple.'' \Paragraph{To find the lowest common multiple of two or more algebraic expressions.} \Item{1.} Find the \LCM\ of $42a^{3}b^{2}$, $30a^{2}b^{4}$, and~$66ab^{3}$. \begin{align*} 42a^{3}b^{2} &= 2 × 3 × 7 × a^{3} × b^{2}; \\ 30a^{2}b^{4} &= 2 × 3 × 5 × a^{2} × b^{4}; \\ 66ab^{3} &= 2 × 3 × 11 × a × b^{3}. \end{align*} \begin{Soln} The \LCM\ must evidently contain each factor the greatest number of times that it occurs in any expression. \begin{align*} \therefore\ \text{\LCM} &= 2 × 3 × 7 × 5 × 11a^{3} × b^{4}, \\ &= 2310a^{3}b^{4}. \end{align*} \end{Soln} \Item{2.} Find the \LCM\ of $4x^{2} - 4x - 80$ and $2x^{2} - 18x + 40$. \begin{Soln} \begin{alignat*}{3} &4x^{2} -& 4x &- 80 &&= 4(x^{2} - x - 20) = 4(x - 5)(x + 4); \\ &2x^{2} -& 18x &+ 40 &&= 2(x^{2} - 9x + 20) = 2(x - 5)(x - 4). \\ \therefore\ &\rlap{\text{\LCM}}&&& &= 4(x - 5)(x + 4)(x - 4). \end{alignat*} \end{Soln} \Dictum{To find the \LCM\ of two or more expressions}, therefore, %% -----File: 094.png---Folio 88------- \begin{Theorem} Resolve each expression into its simplest factors. Find the product of all the different factors, taking each factor the greatest number of times it occurs in any of the given expressions. \end{Theorem} \Exercise{41.} Find the \LCM\ of: \begin{multicols}{2} \Item{1.} $9xy^{3}$ and $6x^{2}y$. \Item{2.} $3abc^{2}$ and $2a^{2}bc^{3}$. \Item{3.} $4a^{3}b$ and $10ab^{3}$. \Item{4.} $6a^{3}b^{3}$ and $15a^{2}b^{4}$. \Item{5.} $21xy^{3}$ and $27x^{3}y^{5}$. \Item{6.} $xy^{3}z^{2}$ and $x^{2}y^{2}z^{3}$. \Item{7.} $a^{2}$ and $a^{2} + a$. \Item{8.} $x^{2}$ and $x^{3} - 3x^{2}$. \Item{9.} $x^{2} - 1$ and $x^{2} + x$. \Item{10.} $x^{2} - 1$ and $x^{2} - x$. \Item{11.} $x^{2} + xy$ and $xy + y^{2}$. \Item{12.} $x^{2} + 2x$ and $(x + 2)^{2}$. \end{multicols} \Item{13.} $a^{2} + 4a + 4$ and $a^{2} + 5a + 6$. \Item{14.} $c^{2} + c - 20$ and $c^{2} - c - 30$. \Item{15.} $b^{2} + b - 42$ and $b^{2} - 11b + 30$. \Item{16.} $y^{2} - 10y + 24$ and $y^{2} + y -20$. \Item{17.} $z^{2} + 2z - 35$ and $z^{2} - 11z + 30$. \Item{18.} $x^{2} - 64; x^{3} - 64$; and $x + 8$. \Item{19.} $a^{2} - b^{2}; (a + b)^{2}$; and $(a - b)^{2}$. \Item{20.} $4ab(a + b)^{2}$ and $2a^{2}(a^{2} - b^{2})$. \Item{21.} $y^{2} + 7y + 12; y^{2} + 6y + 8$; and $y^{2} + 5y +6$. \Item{22.} $x^{2} - 1; x^{3} + x^{2} + x + 1$; and $x^{3} - x^{2} + x - 1$. \Item{23.} $1 - x^{2}; 1 - x^{3}$; and $1 + x$. \Item{24.} $x^{2} + 2xy + y^{2}; x^{2} - y^{2}$; and $x^{2} - 2xy + y^{2}$. \Item{25.} $x^{3} - 27; x^{2} + 2x - 15; x^{2} + 5x$. \Item{26.} $(a + b)^{2} - c^{2}; (a + b + c)^{2}$; and $a + b - c$. \Item{27.} $x^{2} - (a + b)x + ab$ and $x^{2} - (a + c)x + ac$. \Item{28.} $(a + b)^{2} - c^{2}$ and $a^{2} + ab + ac$. %% -----File: 095.png---Folio 89------- \Chapter{IX.}{Fractions.} \Paragraph{125.} An \Defn{algebraic fraction} is the indicated quotient of two expressions, written in the form~$dfrac{a}{b}$. The dividend~$a$ is called the \Defn{numerator}, and the divisor~$b$ is called the \Defn{denominator}; and the numerator and denominator are called the \Defn{} of the fraction. \Paragraph{126.} The introduction of the same factor into the dividend and divisor does not alter the value of the quotient, and the rejection of the same factor from the dividend and divisor does not alter the value of the quotient. \begin{DPgather*} \lintertext{\indent Thus} \frac{12}{4} = 3;\quad \frac{2 × 12}{2 × 4} = 3; \frac{12÷2}{4÷2} = 3. \EqText{Hence,} \end{DPgather*} \begin{Theorem} The value of a fraction is not altered if the numerator and denominator are both multiplied, or both divided, by the same factor. \end{Theorem} \Section{Reduction of Fractions.} \Paragraph{127.} To reduce a fraction is to change its \emph{form} without altering its \emph{value}. \Section{Case I.} \Paragraph{128. To Reduce a Fraction to its Lowest .} A fraction is in its \emph{lowest } when the numerator and denominator have no common factor. We have, therefore, the following rule: %% -----File: 096.png---Folio 90------- \begin{Theorem} Resolve the numerator and denominator into their prime factors, and cancel all the common factors. \end{Theorem} Reduce the following fractions to their lowest : \Item{1.} $\dfrac{38a^{2}b^{3}c^{4}}{57a^{3}bc^{2}} = \dfrac{2 × 19a^{2}b^{3}c^{4}}{3 × 19a^{3}bc^{2}} = \dfrac{2b^{2}c^{2}}{3a}$. \Item{2.} $\dfrac{a^{3} - x^{3}}{a^{2} - x^{2}} = \dfrac{(a - x)(a^{2} + ax + x^{2})}{(a - x)(a + x)} = \dfrac{a^{2} + ax + x^{2}}{a + x}$. \Item{3.} $\dfrac{a^{2} + 7a + 10}{a^{2} + 5a + 6} = \dfrac{(a + 5)(a + 2)}{(a + 3)(a + 2)} = \dfrac{a + 5}{a + 3}$. \Exercise{42.} Reduce to lowest : \begin{multicols}{3} \Item{1.} $\dfrac{2a}{6ab}$. \Item{2.} $\dfrac{12m^{2}n}{15mn^{2}}$. \Item{3.} $\dfrac{21m^{2}p^{2}}{28mp^{4}}$. \Item{4.} $\dfrac{3x^{3}y^{2}z}{6xy^{3}z^{2}}$. \Item{5.} $\dfrac{5a^{3}b^{3}c^{3}}{15c^{5}}$. \Item{6.} $\dfrac{34x^{3}y^{4}z^{5}}{51x^{2}y^{3}z^{5}}$. \Item{7.} $\dfrac{46m^{2}np^{3}}{69mnp^{4}}$. \Item{8.} $\dfrac{39a^{2}b^{3}c^{4}}{52a^{5}bc^{3}}$. \Item{9.} $\dfrac{58xy^{4}z^{6}}{87xy^{2}z^{2}}$. \end{multicols} \begin{multicols}{2} \Item{10.} $\dfrac{abx - bx^{2}}{acx - cx^{2}}$. \Item{11.} $\dfrac{4a^{2} - 9b^{2}}{4a^{2} + 6ab}$. \Item{12.} $\dfrac{3a^{2} + 6a}{a^{2} + 4a + 4}$. \Item{13.} $\dfrac{x^{2} + 5x}{x^{2} + 4x-5}$. \Item{14.} $\dfrac{xy - 3y^{2}}{x^{3} - 27y^{3}}$. \Item{15.} $\dfrac{x^{2} + 5x + 4}{x^{2} - x-20}$. \Item{16.} $\dfrac{x^{2} + 2x + 1}{x^{2} - x-2}$. \Item{17.} $\dfrac{(a + b)^{2} - c^{2}}{a^{2} + ab-ac}$. \Item{18.} $\dfrac{x^{2} + 9x + 20}{x^{2} + 7x + 12}$. \Item{19.} $\dfrac{x^{2} - 14x - 15}{x^{2} - 12x - 45}$. \end{multicols} %% -----File: 097.png---Folio 91------- \PrintBreak \Section{Case II.} \Paragraph{129. To Reduce a Fraction to an Integral or Mixed Expression.} \Item{1.} Reduce $\dfrac{x^{3} - 1}{x - 1}$ to an integral or mixed expression. By division, $\dfrac{x^{3} - 1}{x - 1} = x^{2} + x + 1$. \Item{2.} Reduce $\dfrac{x^{3} - 1}{x + 1}$ to an integral or mixed expression. By division, $\dfrac{x^{3} - 1}{x + 1} = x^{2} - x + 1 - \dfrac{2}{x + 1}$. \ScreenBreak \Dictum{To reduce a fraction to an integral or mixed expression}, therefore, \begin{Theorem} Divide the numerator by the denominator. \end{Theorem} \begin{Remark}[Note.] If there is a remainder, this remainder must be written as the numerator of a fraction of which the divisor is the denominator, and this fraction with its proper sign must be annexed to the integral part of the quotient. \end{Remark} \Exercise{43.} Reduce to integral or mixed expressions: \begin{multicols}{2} \Item{1.} $\dfrac{a^{2} - b^{2} + 2}{a - b}$. \Item{2.} $\dfrac{a^{2} - b^{2} - 2}{a + b}$. \Item{3.} $\dfrac{a^{3} - 2a^{2} + 2a + 1}{a^{2} - a - 1}$. \Item{4.} $\dfrac{2x^{2} - 2x + 1}{x + 1}$. \Item{5.} $\dfrac{8x^{3}}{2x + 1}$. \Item{6.} $\dfrac{5x^{3} + 9x^{2} + 3}{x^{2} + x - 1}$. \Item{7.} $\dfrac{a^{3} + a^{2} + 7a - 2}{a^{2} + a + 2}$. \Item{8.} $\dfrac{y^{4} + y^{2}x^{2} + x^{4}}{y^{2} + yx + x^{2}}$. \Item{9.} $\dfrac{x^{4} - 3x^{3} + x - 1}{x^{2} + x + 1}$. \Item{10.} $\dfrac{x^{5} - x^{4} + 1}{x^{2} - x - 1}$. \end{multicols} %% -----File: 098.png---Folio 92------- \ScreenBreak \Section{Case III.} \Paragraph{130. To Reduce a Mixed Expression to a Fraction.} The process is precisely the same as in Arithmetic. Hence, \begin{Theorem} Multiply the integral expression by the denominator, to the product add the numerator, and under the result write the denominator. \end{Theorem} Reduce to a fraction $a - b - \dfrac{a^{2} - ab - b^{2}}{a + b}$. \begin{align*} a - b - \frac{a^{2} - ab - b^{2}}{a + b} &= \frac{(a - b)(a + b) - (a^{2} - ab - b^{2})}{a + b} \\ &= \frac{a^{2} - b^{2} - a^{2} + ab + b^{2}}{a + b} \\ &= \frac{ab}{a + b}. \end{align*} \begin{Remark}[Note.] The dividing line between the of a fraction has the force of a vinculum affecting the numerator. If, therefore, a \emph{minus sign} precedes the dividing line, as in the preceding Example, and this line is removed, the numerator of the given fraction must be enclosed in a parenthesis preceded by the minus sign, or the sign of every term of the numerator must be changed. \end{Remark} \ScreenBreak \Exercise{44.} Reduce to a fraction: \begin{multicols}{2} \Item{1.} $x - y + \dfrac{2xy}{x - y}$. \Item{2.} $x + y - \dfrac{2xy}{x + y}$. \Item{3.} $1 - \dfrac{x - y}{x + y}$. \Item{4.} $a - x - \dfrac{a^{2} + x^{2}}{a - x}$. \Item{5.} $x + 2 - \dfrac{x^{2} - 4}{x - 3}$. \Item{6.} $\dfrac{x - 3}{x - 2} - 2x + 1$. \Item{7.} $\dfrac{x + 3}{x + 2} + x^{2} - x - 1$. \Item{8.} $2a - 1 + \dfrac{3 - 4a}{a - 3}$. \Item{9.} $1 - 2a^{2} - \dfrac{a^{2} - a + 2}{a - 1}$. \Item{10.} $a^{2} + 2a - 5 - \dfrac{2a - 1}{3a^{2} + 1}$. \end{multicols} %% -----File: 099.png---Folio 93------- \Section{Case IV.} \Paragraph{131. To Reduce Fractions to their Lowest Common Denominator.} The process is the same as in Arithmetic. Hence: \begin{Theorem} Find the lowest common multiple of the denominators; this will be the required denominator. Divide this denominator by the denominator of each fraction. Multiply the first numerator by the first quotient, the second numerator by the second quotient, and so on. The products will be the respective numerators of the equivalent fractions. \end{Theorem} \begin{Remark}[Note.] Every fraction should be in its lowest before the common denominator is found. \end{Remark} \Item{1.} Reduce $\dfrac{3x}{4a^{2}}$, $\dfrac{2y}{3a}$, and $\dfrac{5}{6a^{3}}$ to equivalent fractions having the lowest common denominator. \begin{Soln} The \LCM\ of $4a^{2}$, $3a$, and $6a^{3} = 12a^{3}$. The respective quotients are $3a$, $4a^{2}$, and~$2$. The products are $9ax$, $8a^{2}y$, and~$10$. Hence, the required fractions are \[ \frac{9ax}{12a^{3}},\quad \frac{8a^{2}y}{12a^{3}}, \quad\text{and}\quad \frac{10}{12a^{3}}. \] \end{Soln} \Item{2.} Express $\dfrac{1}{x^{2} + 5x + 6}$ and $\dfrac{1}{x^{2} + 4x + 3}$ with lowest common denominator. \begin{Soln} The factors of the denominators are $x + 3$, $x + 2$; and $x + 3$, $x + 1$. Hence the lowest common denominator (\LCD) is $(x + 3)(x + 2)(x + 1)$, and the required numerators are $x + 1$ and $x + 2$. Hence the required fractions are \[ %[** TN: Equations not displayed in the original] \frac{x + 1}{(x + 3)(x + 2)(x + 1)} \quad\text{and}\quad \frac{x + 2}{(x + 3)(x + 2)(x + 1)}. \] \end{Soln} %% -----File: 100.png---Folio 94------- \ScreenBreak \Exercise{45.} Express with lowest common denominator: \begin{multicols}{2} \Item{1.} $\dfrac{x}{x - a}$, $\dfrac{x^{2}}{x^{2} - a^{2}}$. \Item{2.} $\dfrac{a}{a + b}$, $\dfrac{a^{2}}{a^{2} - b^{2}}$. \Item{3.} $\dfrac{1}{1 + 2a}$, $\dfrac{1}{1 - 4a^{2}}$. \Item{4.} $\dfrac{9}{16 - x^{2}}$, $\dfrac{4 - x}{4 + x}$. \Item{5.} $\dfrac{a^{2}}{27 - a^{3}}$, $\dfrac{a}{3 - a}$. \Item{6.} $\dfrac{1}{x^{2} - 5x + 6}$, $\dfrac{1}{x^{2} - x-6}$. \end{multicols} \Section{Addition and Subtraction of Fractions.} \Paragraph{132.} The algebraic sum of two or more fractions which have the same denominator, is a fraction whose numerator is the algebraic sum of the numerators of the given fractions, and whose denominator is the common denominator of the given fractions. Hence, \Dictum{To add fractions}, \begin{Theorem} Reduce the fractions to equivalent fractions having the same denominator; and write the algebraic sum of the numerators of these fractions over the common denominator. \end{Theorem} \Paragraph{133. When the denominators are simple expressions.} \Item{1.} Simplify $\dfrac{3a - 4b}{4} - \dfrac{2a - b + c}{3} + \dfrac{a - 4c}{12}$. \begin{Soln} The $\text{\LCD} = 12$. The multipliers, that is, the quotients obtained by dividing $12$ by $4$, $3$, and $12$, are $3$,~$4$, and~$1$. Hence the sum of the fractions equals \begin{align*} &\frac{9a - 12b}{12} - \frac{8a - 4b + 4c}{12} + \frac{a - 4c}{12} \\ &\quad= \frac{9a - 12b - 8a + 4b - 4c + a - 4c}{12} \\ &\quad= \frac{2a - 8b-8c}{12} = \frac{a - 4b - 4c}{6}. \end{align*} \end{Soln} %% -----File: 101.png---Folio 95------- The preceding work may be arranged as follows: \begin{Soln} The $\text{\LCD} = 12$. The multipliers are $3$,~$4$, and~$1$, respectively. \begin{gather*} \begin{array}{l*{5}{cr}cl} 3(3a &-& 4b & & ) &=& 9a &-&12b & & &=& \text{1st numerator.} \\ \llap{$-$} 4(2a &-& b &+& c) &=&-8a &+& 4b &-& 4c &=& \text{2d numerator.} \\ 1( a &-& & &4c) &=& a & & &-& 4c &=& \text{3d numerator.} \\ \cline{7-11} & & & & & & 2a &-& 8b &-& 8c \\ & & & & &\rlap{or}& 2(a &-& 4b &-& 4c) &=& \text{the sum of the numerators.} \end{array} \\ \therefore\ \text{sum of fractions} = \frac{2(a - 4b - 4c)}{12} = \frac{a - 4b - 4c}{6}. \end{gather*} \end{Soln} \Exercise{46.} Find the sum of: \Item{1.} $\dfrac{x + 1}{2} + \dfrac{x - 3}{5} + \dfrac{x + 5}{10}$. \Item{2.} $\dfrac{2x - 1}{3} + \dfrac{x + 5}{4} + \dfrac{x - 4}{6}$. \Item{3.} $\dfrac{7x - 1}{6} - \dfrac{3x - 2}{7} + \dfrac{x - 5}{3}$. \Item{4.} $\dfrac{3x - 2}{9} - \dfrac{x - 2}{6} + \dfrac{5x + 3}{4}$. \Item{5.} $\dfrac{x - 1}{6} - \dfrac{x - 3}{3} + \dfrac{x - 5}{2}$. \Item{6.} $\dfrac{x - 2y}{2x} + \dfrac{x + 5y}{4x} - \dfrac{x + 7y}{8x}$. \Item{7.} $\dfrac{5x - 11}{3} - \dfrac{2x - 1}{10} - \dfrac{11x - 5}{15}$. \Item{8.} $\dfrac{x - 3}{3x} - \dfrac{x^{2} - 6x}{5x^{2}} - \dfrac{7x^{2} - x^{3}}{15x^{3}}$. \Item{9.} $\dfrac{ac - b^{2}}{ac} - \dfrac{ab - c^{2}}{ab} + \dfrac{a^{2} - bc}{bc}$. %% -----File: 102.png---Folio 96------- \PrintBreak \Paragraph{134. When the denominators have compound expressions, arranged in the same order.} \Item{1.} Simplify $\dfrac{a + b}{a - b} - \dfrac{a - b}{a + b} - \dfrac{4ab}{a^{2} - b^{2}}$. \begin{Soln} The \LCD\ is $(a - b)(a + b)$. The multipliers are $a + b$, $a - b$, and~$1$, respectively. \begin{gather*} \begin{array}{l*{3}{cr}cl} (a + b)(a + b) &=& a^{2} &+& 2ab &+& b^{2} &=& \text{1st numerator.} \\ \llap{$-$} (a - b)(a - b) &=&-a^{2} &+& 2ab &-& b^{2} &=& \text{2d numerator.} \\ \llap{$-$} 1(4ab) &=& &-& 4ab & & &=& \text{3d numerator.} \\ \cline{3-7} & & \multicolumn{5}{c}{0} &=& \text{sum of numerators.} \end{array} \\ \therefore\ \text{Sum of fractions${} = 0$.} \end{gather*} \end{Soln} \Exercise{47.} Find the sum of: \begin{multicols}{2} \Item{1.} $\dfrac{1}{x + 3} + \dfrac{1}{x - 2}$. \Item{2.} $\dfrac{1}{x + 1} + \dfrac{1}{x - 1}$. \Item{3.} $\dfrac{4}{x - 8} - \dfrac{1}{x + 2}$. \Item{4.} $\dfrac{a + x}{a - x} - \dfrac{a - x}{a + x}$. \Item{5.} $\dfrac{x}{x - a} - \dfrac{x^{2}}{x^{2} - a^{2}}$. \Item{6.} $\dfrac{4a^{2} + b^{2}}{4a^{2} - b^{2}} - \dfrac{2a + b}{2a - b}$. \Item{7.} $\dfrac{7}{9 - a^{2}} - \dfrac{1}{3 + a} - \dfrac{1}{3 - a}$. \Item{8.} $\dfrac{1}{a - b} - \dfrac{1}{a + b} - \dfrac{b}{a^{2} - b^{2}}$. \end{multicols} %[** TN: Adjusted layout] \Item{9.} $\dfrac{2}{x - 2} - \dfrac{2}{x + 2} + \dfrac{5x}{x^{2} - 4}$. \Item{10.} $\dfrac{3 - x}{1 - 3x} - \dfrac{3 + x}{1 + 3x} - \dfrac{15x - 1}{1 - 9x^{2}}$. \begin{multicols}{2} \Item{11.} $\dfrac{1}{a} - \dfrac{1}{a + 3} + \dfrac{3}{a + 1}$. \Item{12.} $\dfrac{x}{x - 1} - \dfrac{1} - \dfrac{1}{x + 1}$. \end{multicols} \Item{13.} $\dfrac{x + 1}{x + 2} + \dfrac{x - 2}{x - 3} + \dfrac{2x + 7}{x^{2} - x - 6}$. \Item{14.} $\dfrac{1}{x(x - 1)} - \dfrac{2}{x^{2} - 1} + \dfrac{1}{x(x + 1)}$. %% -----File: 103.png---Folio 97------- \Exercise{48.} Find the sum of: \Item{1.} $\dfrac{1}{2x + 1} + \dfrac{1}{2x - 1} - \dfrac{4x}{4x^{2} - 1}$. \Item{2.} $\dfrac{a^{2} + b^{2}}{a^{2} - b^{2}} + \dfrac{a}{a + b} - \dfrac{b}{a - b}$. \Item{3.} $\dfrac{3a}{1 - a^{2}} + \dfrac{2}{1 - a} - \dfrac{2}{1 + a}$. \Item{4.} $\dfrac{1}{2x + 5y} - \dfrac{3x}{4x^{2} - 25y^{2}} + \dfrac{1}{2x + 5y}$. \Item{5.} $\dfrac{1}{x + 4y} - \dfrac{8y}{x^{2} - 16y^{2}} + \dfrac{1}{x - 4y}$. \Item{6.} $\dfrac{3}{2x - 3} - \dfrac{2}{2x + 3} - \dfrac{3}{4x^{2} - 9}$. \Section{Multiplication and Division of Fractions.} \Paragraph{135.} Find the product of $\dfrac{a}{b} × \dfrac{c}{d}$. Let $\dfrac{a}{b} = x$, and $\dfrac{c}{d} = y$. Then $a = bx$, and $c = dy$. The product of these two equations is \begin{DPalign*} ac &= bdxy. \\ \lintertext{\indent Divide by~$bd$,} \frac{ac}{bd} &= xy. \displaybreak[1] \\ \lintertext{\indent But} \frac{a}{b} × \frac{c}{d} = xy. \displaybreak[1] \\ \lintertext{\indent Therefore} \frac{a}{b} × \frac{c}{d} = \frac{ac}{bd}. \end{DPalign*} %% -----File: 104.png---Folio 98------- \Dictum{To find the product of two fractions}, therefore, \begin{Theorem} Find the product of the numerators for the required numerator, and the product of the denominators for the required denominator. \end{Theorem} In like manner, \[ \frac{a}{b} × \frac{c}{d} × \frac{e}{f} = \frac{ac}{bd} × \frac{e}{f} = \frac{ace}{bdf}. \] \Paragraph{136. Reciprocals.} If the product of two numbers is equal to~$1$, each of the numbers is called the \Defn{reciprocal} of the other. The reciprocal of $\dfrac{a}{b}$ is $\dfrac{b}{a}$, for $\dfrac{b}{a} × \dfrac{a}{b} = \dfrac{ba}{ab} = 1$. The reciprocal of a fraction, therefore, is the fraction inverted. %[** TN: Next line broken in the original] Since $\dfrac{a}{b} ÷ \dfrac{a}{b} = 1$, and $\dfrac{b}{a} × \dfrac{a}{b} = 1$, it follows that \begin{Theorem} To divide by a fraction is the same as to multiply by its reciprocal. \end{Theorem} \Paragraph{137.} \Dictum{To Divide by a Fraction}, therefore, \begin{Theorem} Invert the divisor and multiply. \end{Theorem} \begin{Remark}[Note.] Every mixed expression should first be reduced to a fraction, and every integral expression should be written as a fraction having $1$~for the denominator. Both of each fraction should be expressed in their prime factors, and if a factor is common to a numerator and denominator, it should be cancelled, as the cancelling of a common factor \emph{before} the multiplication is evidently equivalent to cancelling it \emph{after} the multiplication. \end{Remark} %% -----File: 105.png---Folio 99------- \Item{1.} Find the product of $\dfrac{3a^{2}b}{2x^{2}y} × \dfrac{6xy^{2}}{7ab} × \dfrac{7abc}{9a^{2}by^{2}}$. \[ \frac{3a^{2}b}{2x^{2}y} × \frac{6xy^{2}}{7ab} × \frac{7abc}{9a^{2}by^{2}} = \frac{3 × 6 × 7a^{3}b^{2}cxy^{2}}{2 × 7 × 9a^{3}b^{2}x^{2}y^{3}} = \frac{c}{xy}. \] \Item{2.} Find the product of $\dfrac{ab - b^{2}}{a + b} × \dfrac{ab + b^{2}}{a^{2} - b^{2}}$. \[ \frac{ab - b^{2}}{a + b} × \frac{ab + b^{2}}{a^{2} - b^{2}} = \frac{b(a - b)}{(a + b)} × \frac{b(a + b)}{(a - b)(a + b)} = \frac{b^{2}}{a + b}. \] \Item{3.} Find quotient of $\dfrac{ab}{(a - b)^{2}} ÷ \dfrac{ac}{a^{2} - b^{2}}$. \begin{align*} \frac{ab}{(a - b)^{2}} ÷ \frac{ac}{a^{2} - b^{2}} &= \frac{ab}{(a - b)(a - b)} × \frac{(a - b)(a + b)}{ac} \\ &= \frac{b(a + b)}{c(a - b)}. \end{align*} \Item{4.} Find the result of $\dfrac{1}{x} × \dfrac{x^{2} - 1}{x^{2} - 4x - 5} ÷ \dfrac{x^{2} + 2x - 3}{x^{2} - 25}$. \begin{align*} &\frac{1}{x} × \frac{x^{2} - 1}{x^{2} - 4x - 5} ÷ \frac{x^{2} + 2x - 3}{x^{2} - 25} \\ &\qquad= \frac{1}{x} × \frac{x^{2} - 1}{x^{2} - 4x - 5} × \frac{x^{2} - 25}{x^{2} + 2x - 3} \\ &\qquad= \frac{1}{x} × \frac{(x - 1)(x + 1)}{(x - 5)(x + 1)} × \frac{(x - 5)(x + 5)}{(x + 3)(x - 1)} \\ &\qquad= \frac{x + 5}{x(x + 3)}. \end{align*} %% -----File: 106.png---Folio 100------- \Exercise{49.} Express in the simplest form: \begin{multicols}{2} \Item{1.} $\dfrac{15a^{2}}{7b^{2}} × \dfrac{28ab}{9a^{3}c}$. \Item{2.} $\dfrac{3x^{2}y^{2}z^{3}}{4a^{2}b^{2}c^{2}} × \dfrac{8a^{3}b^{2}c^{2}}{9x^{2}yz^{3}}$. \Item{3.} $\dfrac{5m^{2}n^{2}p^{4}}{3x^{2}yz^{3}} × \dfrac{21xyz^{2}}{20m^{2}n^{2}p^{2}}$. \Item{4.} $\dfrac{16a^{4}b^{2}c^{3}}{21m^{2}x^{3}y^{4}} × \dfrac{3m^{3}x^{3}y^{4}}{8a^{2}b^{2}c^{2}}$. \Item{5.} $\dfrac{2a}{bc} × \dfrac{3b}{ac} × \dfrac{5c}{ab}$. \Item{6.} $\dfrac{2a^{3}}{3bc} × \dfrac{3b^{3}}{5ac} × \dfrac{5c^{3}}{2ab}$. \Item{7.} $\dfrac{5abc^{3}}{3x^{2}} ÷ \dfrac{10ac^{3}}{6bx^{2}}$. \Item{8.} $\dfrac{x^{2} - a^{2}}{x^{2} - 4a^{2}} × \dfrac{x + 2a}{x - a}$. \Item{9.} $\dfrac{x^{2}y^{2} + 3xy}{4c^{2} - 1} × \dfrac{2c + 1}{xy + 3}$. \Item{10.} $\dfrac{a^{2} - 100}{a^{2} - 9} × \dfrac{a - 3}{a - 10}$. \Item{11.} $\dfrac{9x^{2} - 4y^{2}}{x^{2} - 4} × \dfrac{x + 2}{3x - 2y}$. \Item{12.} $\dfrac{25a^{2} - b^{2}}{16a^{2} - 9b^{2}} ÷ \dfrac{5a - b}{4a - 3b}$. \end{multicols} %[** TN: Moved end of two-column layout up two questions] \Item{13.} $\dfrac{x^{2} - 49}{(a + b)^{2} - c^{2}} ÷ \dfrac{x + 7}{(a + b) - c}$. \Item{14.} $\dfrac{x^{2} + 2x + 1}{x^{2} - 25} ÷ \dfrac{x + 1}{x^{2} + 5x}$. \Item{15.} $\dfrac{a^{2} + 3a + 2}{a^{2} + 5a + 6} × \dfrac{a^{2} + 7a + 12}{a^{2} + 9a + 20}$. \Item{16.} $\dfrac{y^{2} - y-30}{y^{2} - 36} × \dfrac{y^{2} - y-2}{y^{2} + 3y-10} × \dfrac{y^{2} + 6y}{y^{2} + y}$. \Item{17.} $\dfrac{x^{2} - 2x + 1}{x^{2} - y^{2}} × \dfrac{x^{2} + 2xy + y^{2}}{x - 1} ÷ \dfrac{x^{2} - 1}{x^{2} - xy}$. \Item{18.} $\dfrac{a^{2} - b^{2}}{a^{2} - 3ab + 2b^{2}} × \dfrac{ab - 2b^{2}}{a^{2} + ab} ÷ \dfrac{(a - b)^{2}}{a(a - b)}$. \Item{19.} $\dfrac{(a + b)^{2} - c^{2}}{a^{2} + ab-ac} × \dfrac{a^{2}b^{2}c^{2}}{a^{2} + ab + ac} ÷ \dfrac{b^{2}c^{2}}{abc}$. \Item{20.} $\dfrac{x^{2} + 7xy + 10y^{2}}{x^{2} + 6xy + 5y^{2}} × \dfrac{x + 1}{x^{2} + 4x + 4} ÷ \dfrac{1}{x + 2}$. %% -----File: 107.png---Folio 101------- \Paragraph{138. Complex Fractions.} A complex fraction is one that has a fraction in the numerator, or in the denominator, or in both. The shortest way to reduce to its simplest form a complex fraction is to multiply both of the fraction by the \LCD\ of the fractions contained in the numerator and denominator. \Item{1.} Simplify $\dfrac{3x}{x - \frac{1}{4}}$. Multiply both by~$4$, and we have \[ \frac{12x}{4x - 1}. \] \Item{2.} Simplify $\dfrac{\dfrac{a + x}{a - x} - \dfrac{a - x}{a + x}}{\dfrac{a + x}{a - x} + \dfrac{a - x}{a + x}}$. The \LCD\ of the fractions in the numerator and denominator is \[ (a - x)(a + x). \] Multiply by $(a - x)(a + x)$, and the result is \begin{align*} &\frac{(a + x)^{2} - (a - x)^{2}}{(a + x)^{2} + (a - x)^{2}} \\ &\qquad= \frac{(a^{2} + 2ax + x^{2}) - (a^{2} - 2ax + x^{2})} {(a^{2} + 2ax + x^{2}) + (a^{2} - 2ax + x^{2})} \\ &\qquad= \frac{a^{2} + 2ax + x^{2} - a^{2} + 2ax - x^{2}} {a^{2} + 2ax + x^{2} + a^{2} - 2ax + x^{2}} \\ &\qquad= \frac{4ax}{2a^{2} + 2x^{2}} \\ &\qquad= \frac{2ax}{a^{2} + x^{2}}. \end{align*} %% -----File: 108.png---Folio 102------- \Exercise{50.} Reduce to the simplest form: \begin{multicols}{2} \Item{1.} $\dfrac{\dfrac{x}{b} + \dfrac{y}{b}}{\dfrac{z}{b}}$. \Item{2.} $\dfrac{x + \dfrac{y}{4}}{x - \dfrac{y}{3}}$. \Item{3.} $\dfrac{\dfrac{ab}{7} - 3d}{3c - \dfrac{ab}{d}}$. \Item{4.} $\dfrac{1 + \dfrac{1}{x + 1}}{1 - \dfrac{1}{x - 1}}$. \Item{5.} $\dfrac{\dfrac{2m + x}{m + x} - 1}{1 - \dfrac{x}{m + x}}$. \Item{6.} $\dfrac{\dfrac{x + y}{x^{2} - y^{2}}}{\dfrac{x - y}{x + y}}$. \Item{7.} $\dfrac{a + \dfrac{ab}{a - b}}{a - \dfrac{ab}{a + b}}$. \Item{8.} $\dfrac{9a^{2} - 64}{a - 1 - \dfrac{a + 4}{4}}$. \Item{9.} $\dfrac{\dfrac{1}{x} + \dfrac{1}{y}}{\dfrac{1}{x} - \dfrac{1}{y}}$. \Item{10.} $\dfrac{x + 3 + \dfrac{2}{x}}{1 + \dfrac{3}{x} + \dfrac{2}{x^{2}}}$. \Item{11.} $\dfrac{\dfrac{1}{x} - \dfrac{2}{x^{2}} + \dfrac{1}{x^{3}}}{\dfrac{(1 - x)^{2}}{x^{2}}}$. \Item{12.} $\dfrac{x^{2} - x-6}{1 - \dfrac{4}{x^{2}}}$. \Item{13.} $\dfrac{a^{2} - a + \dfrac{a - 1}{a + 1}}{a + \dfrac{1}{a + 1}}$. \Item{14.} $\dfrac{\dfrac{4a(a - x)}{a^{2} - x^{2}}}{\dfrac{a - x}{a + x}}$. \end{multicols} %% -----File: 109.png---Folio 103------- \Chapter{X.}{Fractional Equations.} \Paragraph{139. To Reduce Equations containing Fractions.} \Item{1.} Solve $\dfrac{x}{3} - \dfrac{x - 1}{11} = x - 9$. \begin{Soln} Multiply by~$33$, the \LCM\ of the denominators. \begin{DPalign*} \lintertext{\indent Then,} 11x - 3x + 3 &= 33x - 297. \\ \lintertext{\indent Transpose,} 11x - 3x - 33x &= - 297 - 3. \\ \lintertext{\indent Combine,} - 25x &= - 300. \\ \lintertext{\indent Divide by~$-25$,} x &= 12. \end{DPalign*} \end{Soln} \begin{Remark}[Note.] Since the minus sign precedes the second fraction, in removing the denominator, the~$+$ (understood) before~$x$, the first term of the numerator, is changed to~$-$, and the~$-$ before~$1$, the second term of the numerator, is changed to~$+$. \end{Remark} \Dictum{To clear an equation of fractions}, therefore, \begin{Theorem} Multiply each term by the \LCM\ of the denominators. \end{Theorem} If a fraction is preceded by a \textbf{minus sign}, \emph{the sign of every term of the numerator must be changed when the denominator is removed}. \Item{2.} Solve $\dfrac{x + 1}{4} - \frac{1}{5}(x - 1) = 1$. \begin{Soln} Multiply by~$20$, the \LCD \begin{DPalign*} 5x + 5 - 4(x - 1) &= 20. \\ 5x + 5 - 4x + 4 &= 20. \\ \lintertext{\indent Transpose,} 5x - 4x &= 20 - 5 - 4. \\ \lintertext{\indent Combine,} x &= 11. \end{DPalign*} \end{Soln} %% -----File: 110.png---Folio 104------- \Item{3.} Solve \[ 7x - \frac{(2x - 3)(3x - 5)}{5} = \frac{153}{10} - \frac{(4x - 5)(3x - 1)}{10}. \] \begin{Soln} Multiply by~$10$, the \LCD, and we have \[ 70x - 2(2x - 3)(3x - 5) = 153 - (4x - 5) (3x - 1). \] Find the products of $(2x - 3)(3x - 5)$ and $(4x - 5)(3x - 1)$. \[ 70x - 2(6x^{2} - 19x + 15) = 153 - (12x^{2} - 19x + 5). \] Remove the parentheses, \[ 70x - 12x^{2} + 38x - 30 = 153 - 12x^{2} + 19x - 5. \] Cancel the~$-12x^{2}$ on each side and transpose, \begin{DPalign*} 70x + 38x - 19x &= 153 + 30 - 5. \\ \lintertext{\indent Combine,} 89x &= 178. \\ \lintertext{\indent Divide by~$89$,} x &= 2. \end{DPalign*} \end{Soln} \Item{4.} Solve $\dfrac{2x + 1}{2x - 1} - \dfrac{2x - 1}{2x + 1} = \dfrac{8}{4x^{2} - 1}$. \begin{Soln} \begin{DPalign*} \lintertext{\indent Since} 4x^{2} - 1 &= (2x + 1)(2x - 1), \\ \lintertext{the \LCD} &= (2x + 1)(2x - 1). \end{DPalign*} Multiply by the \LCD, and we have, \begin{DPalign*} 4x^{2} + 4x + 1-(4x^{2} - 4x + 1) &= 8. \\ \therefore 4x^{2} + 4x + 1 - 4x^{2} + 4x - 1 &= 8. \\ \therefore 8x &= 8. \\ \therefore x &= 1. \end{DPalign*} \end{Soln} \Item{5.} Solve $\dfrac{4}{x + 1} - \dfrac{x + 1}{x - 1} + \dfrac{x^{2} - 3}{x^{2} - 1} = 0$. \begin{Soln} \begin{DPalign*} \lintertext{\indent Since} x^{2} - 1 &= (x + 1)(x - 1) \\ \lintertext{the \LCD} &= (x + 1)(x - 1). \end{DPalign*} Multiply by the \LCD, $x^{2} - 1$, and we have, \begin{DPalign*} 4(x - 1) - (x + 1)(x + 1) + x^{2} - 3 &= 0. \\ \therefore 4x - 4 - x^{2} - 2x - 1 + x^{2} - 3 &= 0. \\ \therefore 2x &= 8. \\ \therefore x &= 4. \end{DPalign*} \end{Soln} %% -----File: 111.png---Folio 105------- %[** TN: Force page break in both print and screen layout] \newpage \Exercise{51.} Solve: \begin{multicols}{2} \Item{1.} $\dfrac{x - 1}{2} = \dfrac{x + 1}{3}$. \Item{2.} $\dfrac{3x - 1}{4} = \dfrac{2x + 1}{3}$. \Item{3.} $\dfrac{6x - 19}{2} = \dfrac{2x - 11}{3}$. \Item{4.} $\dfrac{7x - 40}{8} = \dfrac{9x - 80}{10}$. \end{multicols} %[** TN: Move end of two-column layout up six questions] \Item{5.} $\dfrac{3x - 116}{4} + \dfrac{180 - 5x}{6} = 0$. \Item{6.} $\dfrac{3x - 4}{2} - \dfrac{3x - 1}{16} = \dfrac{6x - 5}{8}$. \Item{7.} $\dfrac{x - 1}{8} - \dfrac{x + 1}{18} = 1$. \Item{8.} $\dfrac{60 - x}{14} - \dfrac{3x - 5}{7} = \dfrac{3x}{4}$. \Item{9.} $\dfrac{3x - 1}{11} - \dfrac{2 - x}{10} = \dfrac{6}{5}$. \Item{10.} $\dfrac{4x}{x + 1} - \dfrac{x}{x - 2} = 3$. \Item{11.} $\dfrac{2x + 1}{4} - \dfrac{4x - 1}{10} + 1 - \frac{1}{4} = 0$. \Item{12.} $\dfrac{x - 1}{5} - \dfrac{43 - 5x}{6} - \dfrac{3x - 1}{8} = 0$. \Item{13.} $\dfrac{1}{x + 7} = \dfrac{2}{x + 1} - \dfrac{1}{x + 3}$. \Item{14.} $\dfrac{1}{x + 4} + \dfrac{2}{x + 6} - \dfrac{3}{x + 5} = 0$. \Item{15.} $\dfrac{4}{x^{2} - 1} + \dfrac{1}{x - 1} + \dfrac{1}{x + 1} = 0$. \Item{16.} $\dfrac{3x + 1}{4} - \dfrac{5x - 4}{7} = 12 - 2x - \dfrac{x - 2}{3}$. \Item{17.} $\frac{1}{8}(5x + 3) - \frac{1}{3}(3 - 4x) + \frac{1}{6}(9 - 5x) = \frac{1}{2}(31 - x)$. \Item{18.} $\frac{1}{15} (34x - 56) - \frac{1}{5}(7x - 3) - \frac{1}{3}(7x - 5) = 0$. %% -----File: 112.png---Folio 106------- \Exercise{52.} Solve: \Item{1.} $\frac{2}{3}(x + 1) - \frac{1}{7}(x + 5) = 1$. \Item{2.} $\frac{6}{7}(x - 9) - \frac{1}{3}(5 - x) + 3x + 1 = 0$. \Item{3.} $\frac{1}{3}(5x - 24) + \frac{1}{7}(x - 2) - 2(x - 1) = 0$. \Item{4.} $\dfrac{x + 3}{4} + \dfrac{7x - 2}{5} = \dfrac{5x - 1}{4} + \dfrac{5x + 4}{9}$. \Item{5.} $\dfrac{x + 1}{3} - \dfrac{x - 1}{4} = \dfrac{x - 2}{5} - \dfrac{x - 3}{6} + \dfrac{31}{60}$. \Item{6.} $\dfrac{(2x - 1)(2 - x)}{2} + x^{2} - \dfrac{1 + 3x}{2} = 0$. \Item{7.} $\dfrac{6x - 11}{4} - \dfrac{3 - 4x}{6} = \dfrac{4}{3} - \dfrac{x}{8}$. \Item{8.} $\dfrac{x + 6}{4} - \dfrac{16 - 3x}{12} = 4\frac{1}{6}$. \Item{9.} $x - \dfrac{x - 2}{3} = \dfrac{x + 23}{4} - \dfrac{10 + x}{5}$. \Item{10.} $\dfrac{5x + 3}{x - 1} + \dfrac{2x - 3}{2x - 1} = 6$. \Item{11.} $\dfrac{3x}{4x + 1} + 1 = 2 - \dfrac{x}{2(2x - 1)}$. \Item{12.} $\dfrac{8x + 7}{5x + 4} - 1 = 1 - \dfrac{2x}{5x + 1}$. \Item{13.} $\dfrac{x + 1}{2(x - 1)} - \dfrac{x - 1}{x + 1} = \dfrac{17 - x^{2}}{2(x^{2} - 1)}$. %% -----File: 113.png---Folio 107------- \Paragraph{140.} If the denominators contain both simple and compound expressions, it is generally best to remove the simple expressions first, and then the compound expressions. After each multiplication the result should be reduced to the simplest form. \Item{1.} Solve $\dfrac{4x + 3}{10} - \dfrac{2x + 3}{5x - 1} = \dfrac{2x - 1}{5}$. \begin{Soln} \begin{DPalign*} \lintertext{\indent Multiply by~$10$,} 4x + 3 - \frac{10(2x + 3)}{5x - 1} &= 4x - 2. \\ \lintertext{\indent Transpose,} 4x + 3 - 4x + 2 &= \frac{10(2x + 3)}{5x - 1}. \\ \lintertext{\indent Combine,} 5 &= \frac{10(2x + 3)}{5x - 1}. \displaybreak[1] \\ \lintertext{\indent Divide by~$5$,} 1 &= \frac{2(2x + 3)}{5x - 1}. \\ \lintertext{\indent Multiply by $5x - 1$,} 5x - 1 &= 4x + 6. \\ \lintertext{\indent Transpose and combine,} x &= 7. \end{DPalign*} \end{Soln} \Exercise{53.} Solve: \Item{1.} $\dfrac{10x + 13}{18} - \dfrac{x + 2}{x - 3} = \dfrac{5x - 4}{9}$. \Item{2.} $\dfrac{6x + 7}{10} - \dfrac{3x + 1}{5} = \dfrac{x - 1}{3x - 4}$. \Item{3.} $\dfrac{11x - 12}{14} - \dfrac{11x - 7}{19x + 7} = \dfrac{22x - 36}{28}$. \Item{4.} $\dfrac{2x - 1}{5} + \dfrac{2x - 3}{17x - 12} = \dfrac{4x - 3}{10}$. \Item{5.} $\dfrac{11x - 13}{7} - \dfrac{13x + 7}{3x + 7} = \dfrac{22x - 75}{14}$. \Item{6.} $\dfrac{6x - 13}{2x + 3} + \dfrac{6x + 7}{9} - \dfrac{2x + 4}{3} = 0$. %% -----File: 114.png---Folio 108------- \Paragraph{141. Literal Equations.} Literal equations are equations in which some or all of the known numbers are represented by letters; the numbers regarded as known numbers are usually represented by the \emph{first} letters of the alphabet. \Item{1.} Solve $\dfrac{x + a}{x - b} + \dfrac{x + b}{x - a} = 2$. \begin{Soln} Multiply by $(x - a)(x - b)$, \begin{DPalign*} \llap{$(x + a)(x - a) + (x + b)(x - b)$} &= 2(x - a)(x - b), \\ \lintertext{or} x^{2} - a^{2} + x^{2} - b^{2} &= 2x^{2} - 2ax - 2bx + 2ab. \displaybreak[1] \\ \lintertext{\indent Transpose,} x^{2} + x^{2} - 2x^{2} + 2ax + 2bx &= a^{2} + 2ab + b^{2}\Add{.} \displaybreak[1] \\ \lintertext{\indent Combine,} 2ax + 2bx &= a^{2} + 2ab + b^{2}, \\ \lintertext{or} 2(a + b)x &= a^{2} + 2ab + b^{2}. \displaybreak[1] \\ \lintertext{\indent \rlap{Divide by~$a + b$,}} 2x &= a + b\Add{,} \\ \therefore x &= \frac{a + b}{2}. \end{DPalign*} \end{Soln} \Exercise{54.} Solve: \Item{1.} $a(x - a) = b(x - b)$. \Item{2.} $(a + b)x + (a - b)x = a^{2}$. \Item{3.} $(a + b)x - (a - b)x = b^{2}$. \Item{4.} $(2x - a) + (x - 2a) = 3a$. \Item{5.} $(x + a + b) + (x + a - b) = 2b$. \Item{6.} $(x - a)(x - b) = x(x + c)$. \Item{7.} $x^{2} + b^{2} = (a - x)(a - x)$. \Item{8.} $(a + b)(2 - x) = (a - b)(2 + x)$. \Item{9.} $(x - a)(2x - a) = 2(x - b)^{2}$. \Item{10.} $(a + bx)(c + d) = (a + b)(c + dx)$. \Item{11.} $\dfrac{x}{a - b} - \dfrac{3a}{a + b} = \dfrac{bx}{a^{2} - b^{2}}$. %% -----File: 115.png---Folio 109------- \PrintBreak \Paragraph{142. Problems involving Fractional Equations.} \Exercise{55.} Ex. The sum of the third and fifth parts of a certain number exceeds two times the difference of the fourth and sixth parts by~$22$. Find the number. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number\Add{.}} \\ \lintertext{\indent Then} \frac{x}{3} + \frac{x}{5} &= \text{the sum of its third and fifth parts,} \\ \frac{x}{4} - \frac{x}{6} &= \text{the difference of its fourth and sixth parts,} \\ 2\left(\frac{x}{4} - \frac{x}{6}\right) &= \text{$2$~times the difference of} \\ &\qquad\text{its fourth and sixth parts,} \end{DPalign*} \begin{DPalign*} \frac{x}{3} + \frac{x}{5} - 2\left(\frac{x}{4} - \frac{x}{6}\right) &= \text{the given excess.} \\ \lintertext{\indent But} 22 &= \text{the given excess.} \\ \therefore \frac{x}{3} + \frac{x}{5} - 2\left(\frac{x}{4} - \frac{x}{6}\right) &= 22. \end{DPalign*} Multiply by~$60$ the \LCD\ of the fractions. \begin{DPalign*} 20x + 12x - 30x + 20x &= 60 × 22. \\ \lintertext{\indent Combining,} 22x &= 60 × 22\Add{,} \\ \therefore x &= 60. \end{DPalign*} The required number, therefore, is~$60$. \end{Soln} \Item{1.} The difference between the fifth and seventh parts of a certain number is~$2$. Find the number. \Item{2.} One-half of a certain number exceeds the sum of its fifth and seventh parts by~$11$. Find the number. \Item{3.} The sum of the third and sixth parts of a certain number exceeds the difference of its sixth and ninth parts by~$16$. Find the number. \Item{4.} There are two consecutive numbers, $x$~and~$x + 1$, such that one-half the larger exceeds one-third the smaller number by~$10$. Find the numbers. %% -----File: 116.png---Folio 110------- \Exercise{56.} Ex. The sum of two numbers is~$63$, and if the greater is divided by the smaller number, the quotient is~$2$ and the remainder~$3$. Find the numbers. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the greater number.} \\ \lintertext{\indent Then} 63 - x &= \text{the smaller number.} \\ \text{Since the quotient} &= \frac{\text{Dividend} - \text{Remainder}}{\text{Divisor}}, \end{DPalign*} and since, in this problem, the dividend is~$x$, the remainder is~$3$, and the divisor is~$63 - x$, we have \begin{DPalign*} \frac{x - 3}{63 - x} = 2. \\ \lintertext{\indent Solving,} x &= 43. \end{DPalign*} The two numbers, therefore, are $43$~and~$20$. \end{Soln} \Item{1.} The sum of two numbers is~$100$, and if the greater is divided by the smaller number, the quotient is~$4$ and the remainder~$5$. Find the numbers. \Item{2.} The sum of two numbers is~$124$, and if the greater is divided by the smaller number, the quotient is~$4$ and the remainder~$4$. Find the numbers. \Item{3.} The difference of two numbers is~$49$, and if the greater is divided by the smaller, the quotient is~$4$ and the remainder~$4$. Find the numbers. \Item{4.} The difference of two numbers is~$91$, and if the greater is divided by the smaller, the quotient is~$8$ and the remainder~$7$. Find the numbers. \Item{5.} Divide $320$ into two parts such that the smaller part is contained in the larger part $11$~times, with a remainder of~$20$. %% -----File: 117.png---Folio 111------- \Exercise{57.} Ex. Eight years ago a boy was one-fourth as old as he will be one year hence. How old is he now? \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of years old he is now.} \\ \lintertext{\indent Then} x - 8 &= \text{the number of years old he was eight years ago,} \\ \lintertext{and} x + 1 &= \text{the number of years old he will be one year hence.} \end{DPalign*} \begin{DPalign*} \therefore x - 8 &= \tfrac{1}{4}(x + 1). \\ \lintertext{\indent Solving,} x &= 11. \end{DPalign*} Therefore the boy is $11$~years old. \end{Soln} \Item{1.} A son is one-fourth as old as his father. In $24$~years he will be one-half as old. Find the age of the son. \Item{2.} B's~age is one-sixth of A's~age. In $15$~years B's~age will be one-third of A's~age. Find their ages. \Item{3.} The sum of the ages of A~and~B is $30$~years, and $5$~years hence B's~age will be one-third of~A's. Find their ages. \Item{4.} A father is $35$~years old, and his son is one-fourth of that age. In how many years will the son be half as old as his father? \Item{5.} A is $60$~years old, and B's~age is two-thirds of~A's. How many years ago was B's~age one-fifth of~A's? \Item{6.} A son is one-third as old as his father. Four years ago he was only one-fourth as old as his father. What is the age of each? \Item{7.} A is $50$~years old, and B~is half as old as~A\@. In how many years will B be two-thirds as old as~A? \Item{8.} B~is one-half as old as~A\@. Ten years ago he was one-fourth as old as~A\@. What are their present ages? \Item{9.} The sum of the ages of a father and his son is $80$~years. The son's age increased by $5$~years is one-fourth of the father's age. Find their ages. %% -----File: 118.png---Folio 112------- \Exercise{58.} Ex. A~can do a piece of work in $2$~days, and B~can do it in $3$~days. How long will it take both together to do the work? \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of days it will take both together.} \\ \lintertext{\indent Then} \frac{1}{x} &= \text{\emph{the part both together can do in one day},} \\ \tfrac{1}{2} &= \text{the part A can do in one day,} \\ \tfrac{1}{3} &= \text{the part B can do in one day,} \\ \lintertext{and} \tfrac{1}{2} + \tfrac{1}{3} &= \text{\emph{the part both together can do in one day}.} \end{DPalign*} \begin{DPalign*} \therefore \frac{1}{2} + \frac{1}{3} &= \frac{1}{x}. \\ \lintertext{\indent Solving,} x &= 1\tfrac{1}{5}. \end{DPalign*} Therefore they together can do the work in $1\frac{1}{5}$~days. \end{Soln} \Item{1.} A~can do a piece of work in $3$~days, B~in $5$~days, and C~in $6$~days. How long will it take them to do it working together? \Item{2.} A~can do a piece of work in $5$~days, B~in $4$~days, and C~in $3$~days. How long will it take them together to do the work? \Item{3.} A~can do a piece of work in $2\frac{1}{2}$~days, B~in $3\frac{1}{2}$~days, and C~in $3\frac{3}{4}$~days. How long will it take them together to do the work? \Item{4.} A~can do a piece of work in $10$~days, B~in $12$~days; A~and~B together, with the help of~C, can do the work in $4$~days. How long will it take C~alone to do the work? \Item{5.} A~and~B together can mow a field in $10$~hours, A~and~C in $12$~hours, and A~alone in $20$~hours. In what time can B~and~C together mow the field? \Item{6.} A~and~B together can build a wall in $12$~days, A~and~C in $15$~days, B~and~C in $20$~days. In what time can they build the wall if they all work together? \begin{Remark}[Hint.] By working \emph{$2$~days each} they build $\frac{1}{12} + \frac{1}{15} + \frac{1}{20}$ of it. \end{Remark} %% -----File: 119.png---Folio 113------- \Exercise{59.} Ex. A cistern can be filled by three pipes in $15$, $20$, and $30$~hours, respectively. In what time will it be filled by all the pipes together? \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of hours it will take all together.} \\ \lintertext{\indent Then} \frac{1}{x} &= \text{the part all together can fill in one hour\Add{.}} \\ \llap{$\tfrac{1}{15} + \tfrac{1}{20}$} + \tfrac{1}{30} &= \text{the part all together can fill in one hour\Add{.}} \end{DPalign*} \begin{DPalign*} \frac{1}{15} + \frac{1}{20} + \frac{1}{30} &= \frac{1}{x}\Add{.} \\ \lintertext{\indent Solving,} x &= 6 \tfrac{2}{3}\Add{.} \end{DPalign*} Therefore the pipes together can fill it in $6 \frac{2}{3}$~hours. \end{Soln} \Item{1.} A cistern can be filled by three pipes in $16$, $24$, and $32$~hours, respectively. In what time will it be filled by all the pipes together? \Item{2.} A tank can be filled by two pipes in $3$~hours and $4$~hours, respectively, and can be emptied by a third pipe in $6$~hours. In what time will the cistern be filled if the pipes are all running together? \Item{3.} A tank can be filled by three pipes in $1$~hour and $40$ minutes, $3$~hours and $20$ minutes, and $5$~hours, respectively. In what time will the tank be filled if all three pipes are running together? \Item{4.} A cistern can be filled by three pipes in $2\frac{1}{3}$~hours, $3\frac{1}{2}$~hours, and $4\frac{2}{3}$~hours, respectively. In what time will the cistern be filled if all the pipes are running together? \Item{5.} A cistern has three pipes. The first pipe will fill the cistern in $12$~hours, the second in $20$~hours, and all three pipes together will fill it in $6$~hours. How long will it take the third pipe alone to fill it? %% -----File: 120.png---Folio 114------- \Exercise{60.} Ex. A courier who travels $6$~miles an hour is followed, after $2$~hours, by a second courier who travels $7\frac{1}{2}$~miles an hour. In how many hours will the second courier overtake the first? \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of hours the first travels.} \\ \lintertext{\indent Then} x - 2 &= \text{the number of hours the second travels,} \\ 6x &= \text{the number of miles the first travels,} \\ \lintertext{and} (x - 2) 7\tfrac{1}{2} &= \text{the number of miles the second travels.} \displaybreak[1] \\ \intertext{\indent They both travel the same distance.} \therefore 6x &= (x - 2) 7\tfrac{1}{2}, \\ \lintertext{or} 12x &= 15x - 30. \\ \therefore x &= 10. \end{DPalign*} Therefore the second courier will overtake the first in $10 - 2$, or $8$~hours. \end{Soln} \Item{1.} A sets out from Boston and walks towards Portland at the rate of $3$~miles an hour. Three hours afterward B sets out from the same place and walks in the same direction at the rate of $4$~miles an hour. How far from Boston will B~overtake~A? \Item{2.} A courier who goes at the rate of $6\frac{1}{2}$~miles an hour is followed, after $4$~hours, by another who goes at the rate of $7\frac{1}{2}$~miles an hour. In how many hours will the second overtake the first? \Item{3.} A person walks to the top of a mountain at the rate of two miles an hour, and down the same way at the rate of $4$~miles an hour. If he is out $6$~hours, how far is it to the top of the mountain? \Item{4.} In going a certain distance, a train travelling at the rate of $40$~miles an hour takes $2$~hours less than a train travelling $30$~miles an hour. Find the distance. %% -----File: 121.png---Folio 115------- \Exercise{61.} Ex. A hare takes $4$~leaps to a greyhound's~$3$; but $2$~of the greyhound's leaps are equivalent to $3$~of the hare's. The hare has a start of $50$~leaps. How many leaps must the greyhound take to catch the hare? \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} 3x &= \text{the number of leaps taken by the greyhound.} \\ \lintertext{\indent Then} 4x &= \text{the number of leaps of the hare in the same time.} \\ %[** TN: Hack to coax spacing] \lintertext{\indent Also, l\rlap{et}} a &= \text{the number of feet in one leap of the hare.} \displaybreak[1] \\ \lintertext{\indent Then} \frac{3a}{2} &= \text{the number of feet in one leap of the hound.} \displaybreak[1] \\ \lintertext{\indent \rlap{Therefore,}} &\quad 3x x \frac{3a}{2} \quad\text{or}\quad \frac{9ax}{2} = \text{the whole distance}. \end{DPalign*} As the hare has a start of $50$~leaps, and takes $4x$~leaps more before she is caught, and as each leap is $a$~feet, \begin{DPalign*} (50 + 4x)a &= \text{the whole distance.} \\ \therefore \frac{9ax}{2} &= (50 + 4x)a. \\ \lintertext{\indent Multiply by~$2$,} 9ax &= (100 + 8x)a, \\ \lintertext{\indent Divide by~$a$,} 9x &= 100 + 8x, \\ x &= 100, \\ \therefore 3x &= 300. \end{DPalign*} Therefore the greyhound must take $300$~leaps. \end{Soln} \Item{1.} A hound makes $3$~leaps while a rabbit makes~$5$; but $1$~of the hound's leaps is equivalent to $2$~of the rabbit's. The rabbit has a start of $120$~leaps. How many leaps will the rabbit take before she is caught? \Item{2.} A rabbit takes $6$~leaps to a dog's~$5$, and $7$~of the dog's leaps are equivalent to $9$~of the rabbit's. The rabbit has a start of~$60$ of her own leaps. How many leaps must the dog take to catch the rabbit? \Item{3.} A dog makes $4$~leaps while a rabbit makes~$5$; but $3$~of the dog's leaps are equivalent to $4$~of the rabbit's. The rabbit has a start of $90$~of the \emph{dog's leaps}. How many leaps will each take before the rabbit is caught? %% -----File: 122.png---Folio 116------- \Exercise{62.} Ex. Find the time between $2$ and $3$~o'clock when the hands of a clock are together. \begin{Soln} At 2 o'clock the hour-hand is 10 minute-spaces ahead of the minute-hand. \begin{DPalign*} \lintertext{\indent Let} x &= \text{\emph{the number of spaces the minute-hand moves over}.} \\ \lintertext{\indent The\rlap{n}} x - 10 &= \text{the number of spaces the hour-hand moves over.} \displaybreak[1] \\ \intertext{\indent Now, as the minute-hand moves $12$~times as fast as the hour-hand,} \llap{$12(x - 10)$} &= \text{\emph{the number of spaces the minute-hand moves over}.} \end{DPalign*} \begin{DPalign*} \therefore 12(x - 10) &= x, \\ \lintertext{and} 11x &= 120. \\ \therefore x &= 10\tfrac{10}{11}. \end{DPalign*} Therefore the time is $10\frac{10}{11}$~minutes past $2$~o'clock. \end{Soln} \Item{1.} Find the time between $5$ and $6$~o'clock when the hands of a clock are together. \Item{2.} Find the time between $2$ and $3$~o'clock when the hands of a clock are at right angles to each other. \begin{Remark}[Hint.] In this case the minute-hand is $15$~minutes ahead of the hour-hand. \end{Remark} \Item{3.} Find the time between $2$ and $3$~o'clock when the hands of a clock point in opposite directions. \begin{Remark}[Hint.] In this case the minute-hand is $30$~minutes ahead of the hour-hand. \end{Remark} \Item{4.} Find the time between $1$ and $2$~o'clock when the hands of a clock are at right angles to each other. \Item{5.} Find the time between $1$ and $2$~o'clock when the hands of a clock point in opposite directions. \Item{6.} At what time between $7$ and $8$~o'clock are the hands of a watch together? %% -----File: 123.png---Folio 117------- \Exercise{63.} Ex. A rectangle has its length $6$~feet more and its width $5$~feet less than the side of its equivalent square. Find the dimensions of the rectangle. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of feet in a side of the square.} \\ \lintertext{\indent Then} x + 6 &= \text{the number of feet in the length of the rectangle,} \\ \lintertext{and} x - 5 &= \text{the number of feet in the width of the rectangle.} \intertext{Since the area of a rectangle is equal to the product of the number of units of length in the length and width of the rectangle,} \llap{$(x + 6)(x - 5)$} &= \text{the area of the rectangle in square feet,} \\ \lintertext{and} x × x &= \text{the area of the square in square feet.} \end{DPalign*} But these areas are equal. \begin{DPalign*} \therefore (x + 6)(x - 5) &= x^{2}. \\ \lintertext{\indent Solving,} x &= 30. \end{DPalign*} Therefore the dimensions of the rectangle are $36$~feet and $25$~feet. \end{Soln} \Item{1.} A rectangle has its length and breadth respectively $7$~feet longer and $6$~feet shorter than the side of the equivalent square. Find its area. \Item{2.} The length of a floor exceeds the breadth by $5$~feet. If each dimension were $1$~foot more, the area of the floor would be $42$~sq.~ft.\ more. Find its dimensions. \Item{3.} A rectangle whose length is $6$~feet more than its breadth, would have its area $35$~sq.~ft.\ more, if each dimension were $1$~foot more. Find its dimensions. \Item{4.} The length of a rectangle exceeds its width by $3$~feet. If the length is increased by $3$~feet and the width diminished by $2$~feet, the area will not be altered. Find its dimensions. \Item{5.} The length of a floor exceeds its width by $10$~feet If each dimension were $2$~feet more, the area would be $144$~sq.~ft.\ more. Find its dimensions. %% -----File: 124.png---Folio 118------- \Paragraph{143. Formulas and Rules.} When the \emph{given} numbers of a problem are represented by letters, the result obtained from solving the problem is a general expression which includes all problems of that class. Such an expression is called a \Defn{formula}, and the translation of this formula into words is called a \Defn{rule}. \Paragraph{144.} We will illustrate by examples. \Item{1.} The sum of two numbers is~$s$, and their difference~$d$. Find the numbers. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the smaller number;} \\ \lintertext{then} x + d &= \text{the larger number.} \displaybreak[1] \\ \lintertext{\indent Hence} x + x + d &= s, \\ \lintertext{or} 2x &= s - d. \\ \therefore x &= \frac{s - d}{2}, \displaybreak[1] \\ \lintertext{and} x + d &= \frac{s - d}{2} + d = \frac{s - d + 2d}{2}, \\ &= \frac{s + d}{2}. \end{DPalign*} Therefore the numbers are $\dfrac{s + d}{2}$ and $\dfrac{s - d}{2}$. \end{Soln} As these formulas hold true whatever numbers $s$~and~$d$ stand for, we have the general rule for finding two numbers when their sum and difference are given: \begin{Theorem} Add the difference to the sum and take half the result for the greater number. Subtract the difference from the sum and take half the result for the smaller number. \end{Theorem} \Item{2.} If A~can do a piece of work in $a$~days, and B~can do the same work in $b$~days, in how many days can both together do it? %% -----File: 125.png---Folio 119------- \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the required number of days\Add{.}} \\ \lintertext{\indent Then,} \frac{1}{x} &= \text{\emph{the part both together can do in one day}\Add{.}} \displaybreak[1] \\ \lintertext{\indent Now} \frac{1}{a} &= \text{the part A can do in one day,} \\ \lintertext{and} \frac{1}{b} &= \text{the part B can do in one day\Add{,}} \\ \lintertext{therefore} \frac{1}{a} + \frac{1}{b} &= \text{\emph{the part both together can do in one day}} \end{DPalign*} \begin{DPalign*} \frac{1}{a} + \frac{1}{b} &= \frac{1}{x}\Add{.} \\ \lintertext{\indent Whence} x &= \frac{ab}{a + b}\Add{.} \end{DPalign*} \end{Soln} The translation of this formula gives the following rule for finding the time required by two agents together to produce a given result when the time required by each agent separately is known. \begin{Theorem} Divide the product of the numbers which express the units of time required by each to do the work by the sum of these numbers, the quotient is the time required by both together. \end{Theorem} \Paragraph{145. Interest Formulas.} The elements involved in computation of interest are the \emph{principal}, \emph{rate}, \emph{time}, \emph{interest}, and \emph{amount}. \begin{DPalign*} \lintertext{\indent Let} p &= \text{the principal,} \\ r &= \text{the interest of \$$1$ for $1$~year, at the given rate,} \\ t &= \text{the time expressed in years,} \\ i &= \text{the interest for the given time and rate,} \\ a &= \text{the amount (sum of principal and interest).} \end{DPalign*} \Paragraph{146. Given the Principal, Rate, and Time. Find the Interest.} Since $r$ is the interest of~\$$1$ for $1$~year, $pr$~is the interest of~\$$p$ for $1$~year, and $prt$~is the interest of~\$$p$ for $t$~years \begin{DPgather*} i = prt. \rintertext{(Formula 1.)} \end{DPgather*} \begin{Theorem}[\textsc{Rule.}] Find the product of the principal, rate, and time\Add{.} \end{Theorem} %% -----File: 126.png---Folio 120------- \Paragraph{147. Given the Interest, Rate, and Time. Find the Principal.} \begin{DPalign*} \lintertext{\indent By formula 1,} prt &= i. \\ \lintertext{\indent Divide by~$rt$,} p &= \frac{i}{rt}. \rintertext{(Formula 2.)} \end{DPalign*} \begin{Theorem}[\textsc{Rule.}] Divide the interest by the product of the rate and time. \end{Theorem} \Paragraph{148. Given the Amount, Rate, and Time. Find the Principal.} \begin{DPalign*} \lintertext{\indent From formula 1,} p + prt &= a, \\ \lintertext{or} p(1 + rt) &= a. \\ \lintertext{\indent Divide by $1 + rt$,} p &= \frac{a}{1 + rt}. \rintertext{(Formula 3.)} \end{DPalign*} \begin{Theorem}[\textsc{Rule.}] Divide the amount by $1$~plus the product of the rate and time. \end{Theorem} \Paragraph{149. Given the Amount, Principal, and Rate. Find the Time.} \begin{DPalign*} \lintertext{\indent From formula 1,} p + prt &= a. \\ \lintertext{\indent Transpose~$p$,} prt &= a - p. \\ \lintertext{\indent Divide by~$pr$,} t &= \frac{a - p}{pr}. \rintertext{(Formula 4.)} \end{DPalign*} \begin{Theorem}[\textsc{Rule.}] Subtract the principal from the amount, and divide the result by the product of the principal and rate. \end{Theorem} \Paragraph{150. Given the Amount, Principal, and Time. Find the Rate.} \begin{DPalign*} \lintertext{\indent From formula 1,} p + prt &= a. \\ \lintertext{\indent Transpose~$p$,} prt &= a - p. \\ \lintertext{\indent Divide by~$pt$,} r &= \frac{a - p}{pt}. \rintertext{(Formula 5.)} \end{DPalign*} \begin{Theorem}[\textsc{Rule.}] Subtract the principal from the amount, and divide the result by the product of the principal and time. \end{Theorem} %% -----File: 127.png---Folio 121------- \Exercise{64.} Solve the following examples by the preceding formulas: \Item{1.} The sum of two angles is $120°\, 30'\, 30''$ and their difference $59°\, 30'\, 30''$. Find the angles. \Item{2.} Find the interest of \$$1000$ for $3$~years and $4$~months at~$4$\%. \Item{3.} Find the principal that will amount to \$$2280$ in $3$~years and $6$~months at~$4$\%. \Item{4.} Find the principal that will produce \$$280$ interest in $2$~years and $4$~months at~$3$\%. \Item{5.} Find the principal that will produce \$$270$ interest in $1$~year and $6$~months at~$6$\%. \Item{6.} Find the principal that will amount to \$$590$ in $4$~years at~$4\frac{1}{2}$\%. \Item{7.} Find the rate if the amount of \$$250$ for $4$~years is~\$$300$. \Item{8.} Find the rate if \$$1000$ amounts to \$$2000$ in $16$~years and $8$~months. \Item{9.} Find the time required for the interest on \$$400$ to be \$$54$ at~$4\frac{1}{2}$\%. \Item{10.} Find the time required for \$$160$ to amount to \$$250$ at~$6$\%. \Item{11.} How much money must be invested at~$5$\% to yield an annual income of~\$$1250$? \Item{12.} Find the principal that will produce \$$100$ a month if invested at $6$\%~per annum. \Item{13.} Find the rate if the interest on \$$1000$ for $8$~months is~\$$40$. \Item{14.} Find the time for a sum of money on interest at~$5$\% to double itself. %% -----File: 128.png---Folio 122------- \Chapter{XI.}{Simultaneous Equations of the First Degree.} \Paragraph{151.} If we have two unknown numbers and but one relation between them, we can find an unlimited number of pairs of values for which the given relation will hold true. Thus, if $x$~and~$y$ are unknown, and we have given only the one relation $x + y = 10$, we can \emph{assume} any value for~$x$, and then from the relation $x + y = 10$ find the corresponding value of~$y$. For from $x + y = 10$ we find $y = 10 - x$. If $x$~stands for~$1$, $y$~stands for~$9$; if $x$~stands for~$2$, $y$~stands for~$8$; if $x$~stands for~$-2$, $y$~stands for~$12$; and so on without end. \Paragraph{152.} We may, however, have two equations that express \emph{different} relations between the two unknown numbers. Such equations are called \Defn{independent equations}. Thus, $x + y = 10$ and $x - y = 2$ are independent equations, for they evidently express \emph{different} relations between $x$~and~$y$. \Paragraph{153.} Independent equations involving the \emph{same} unknown numbers are called \Defn{simultaneous equations}. If we have two unknown numbers, and two independent equations involving them, there is but \emph{one} pair of values which will hold true for both equations. Thus, if besides the relation $x + y = 10$, we have also the relation $x - y = 2$, the only pair of values for which both equations will hold true is the pair $x = 6$, $y = 4$. Observe that in this problem $x$~stands for the same number in \emph{both} equations; so also does~$y$. %% -----File: 129.png---Folio 123------- \Paragraph{154.} Simultaneous equations are solved by combining the equations so as to obtain a single equation with one unknown number. This process is called \Defn{Elimination}. \Paragraph{155. Elimination by Addition or Subtraction.} %[** TN: Omitted large brace for grouping, horizontal bar indicating summation] \Item{1.} Solve: \begin{alignat*}{2} 5x &- 3y &&= 20 \Tag{(1)} \\ 2x &+ 5y &&= 39 \Tag{(2)} \end{alignat*} \begin{Soln} Multiply (1) by~$5$, and (2) by~$3$, \begin{DPalign*} 25x - 15y &= 100 \Tag{(3)} \\ 6x + 15y &= 117 \Tag{(4)} \\ \lintertext{\indent Add (3) and (4),} 31x \PadTo{{} + 15y}{} &= 217 \\ \therefore x &= 7. \intertext{\indent Substitute the value of~$x$ in~(2),} 14 + 5y &= 39. \\ 5y &= 25. \\ \therefore y &= 5. \end{DPalign*} In this solution $y$~is eliminated by \emph{addition}. \end{Soln} \Item{2.} Solve: \begin{alignat*}{2} 6x &+ 35y &&= 177 \Tag{(1)} \\ 8x &- 21y &&= \Z33 \Tag{(2)} \end{alignat*} \begin{Soln} Multiply (1) by~$4$, and (2) by~$3$, \begin{DPalign*} 24x + 140y &= 708 \Tag{(3)} \\ 24x - \Z63y &= \Z99 \Tag{(4)} \\ \lintertext{\indent Subtract,} 203y &= 609 \\ \therefore y &= 3. \\ \intertext{\indent Substitute the value of~$y$ in (2),} 8x - 63 &= 33. \\ 8x &= 96. \\ \therefore x &= 12. \end{DPalign*} In this solution $x$~is eliminated by \emph{subtraction}. \end{Soln} %% -----File: 130.png---Folio 124------- \Paragraph{156.} \Dictum{To eliminate by addition or subtraction}, therefore, \begin{Theorem} Multiply the equations by such numbers as will make the coefficients of one of the unknown numbers equal in the resulting equations. Add the resulting equations if these equal coefficients have unlike signs; subtract one from the other if these equal coefficients have like signs. \end{Theorem} \begin{Remark}[Note.] It is generally best to select the letter to be eliminated which requires the smallest multipliers to make its coefficients equal; and the smallest multiplier for each equation is found by dividing the \LCM\ of the coefficients of this letter by the given coefficient in that equation. Thus, in example~2, the \LCM\ of $6$~and~$8$ (the coefficients of~$x$) is~$24$, and hence the smallest multipliers of the two equations are $4$~and~$3$, respectively. \end{Remark} Sometimes the solution is simplified by first adding the given equations, or by subtracting one from the other. \begin{Soln} \begin{DPalign*} \lintertext{\indent Ex.} x + 49y &= 51 \Tag{(1)} \\ 49x + \PadTo{49y}{y} &= 99 \Tag{(2)} \displaybreak[1] \\ \lintertext{\indent Add (1) and (2),} 50x + 50y &= 150 \Tag{(3)} \displaybreak[1] \\ \lintertext{\indent Divide (3) by~$50$,} x + y &= 3. \Tag{(4)} \displaybreak[1] \\ \lintertext{\indent \rlap{Subtract (4) from (1),}} 48y &= 48. \\ \therefore y &= 1. \displaybreak[1] \\ \lintertext{\indent \rlap{Subtract (4) from (2),}} 48x &= 96. \\ \therefore x &= 2. \end{DPalign*} \end{Soln} \Exercise{65.} Solve by addition or subtraction: \begin{multicols}{2} \Item{1.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 5x &+ 4y &&= 14 \\ 17x &- 3y &&= 31 \end{alignedat}\right\}$} \Item{2.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 3x &- 2y &&= \Z5 \\ 2x &+ 5y &&= 16 \end{alignedat}\right\}$} \Item{3.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 2x &- 3y &&= \Z7 \\ 5x &+ 2y &&= 27 \end{alignedat}\right\}$} \Item{4.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 7x &+ 6y &&= 20 \\ 2x &+ 5y &&= \Z9 \end{alignedat}\right\}$} \Item{5.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} x &+ 5y &&= 11 \\ 3x &+ 2y &&= \Z7 \end{alignedat}\right\}$} \Item{6.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 3x &- 5y &&= 13 \\ 4x &- 7y &&= 17 \end{alignedat}\right\}$} %% -----File: 131.png---Folio 125------- \Item{7.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 8x &- \Z y &&= \Z3 \\ 7x &+ 2y &&= 63 \end{alignedat}\right\}$} \Item{8.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 5x &- 4y &&= \Z7 \\ 7x &+ 3y &&= 70 \end{alignedat}\right\}$} \Item{9.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} x &+ 21y &&= \Z2 \\ 2x &+ 27y &&= 19 \end{alignedat}\right\}$} \Item{10.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 6x &- 13y &&= -1 \\ 5x &- 12y &&= -2 \end{alignedat}\right\}$} \Item{11.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 7x &+ \Z y &&= 265 \\ 3x &- 5y &&= \Z\Z5 \end{alignedat}\right\}$} \Item{12.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 2x &+ 3y &&= \Z7 \\ 8x &- 5y &&= 11 \end{alignedat}\right\}$} \Item{13.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 5x &+ 7y &&= 19 \\ 7x &+ 4y &&= 15 \end{alignedat}\right\}$} \Item{14.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 11x &- 12y &&= \Z9 \\ 4x &+ \Z5y &&= 22 \end{alignedat}\right\}$} \Item{15.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} x &+ 8y &&= 17 \\ 7x &- 3y &&= \Z1 \end{alignedat}\right\}$} \Item{16.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} 4x &+ 3y &&= 25 \\ 5x &- 4y &&= \Z8 \end{alignedat}\right\}$} \end{multicols} Clear of fractions and solve: \begin{multicols}{2} \Item{17.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} \frac{2x}{3} &- \frac{5y}{4} &&= 3 \\ \frac{7x}{4} &- \frac{5y}{3} &&= \frac{43}{3} \end{alignedat}\right\}$} \Item{18.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} \frac{7x}{6} &+ \frac{6y}{7} &&= 32 \\ \frac{5x}{4} &- \frac{2y}{3} &&= 1 \end{alignedat}\right\}$} \Item{19.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned} \frac{x + y}{4} - \frac{7x - 5y}{11} &= 3 \\ \frac{x}{5} - \frac{2y}{7} + 1 &= 0 \end{aligned}\right\}$} \Item{20.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned} \frac{ 6x + 7y}{2} &= 22 \\ \frac{55y - 2x}{5} &= 20 \end{aligned}\right\}$} \end{multicols} \Item{21.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} \frac{x + y}{2} &- \frac{x - y}{3} &&= \Z8 \\ \frac{x + y}{3} &+ \frac{x - y}{4} &&= 11 \end{alignedat}\right\}$} \Item{22.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned} \frac{8x - 5y}{7} + \frac{11y - 4x}{5} &= 4 \\ \frac{17x - 13y}{5} + \frac{2x}{3} &= 7 \end{aligned}\right\}$} %% -----File: 132.png---Folio 126------- \Item{23.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} \frac{ 5x - 3y}{3} &+ \frac{7x - 5y}{11} &&= 4 \\ \frac{15y - 3x}{7} &+ \frac{7y - 3x}{5} &&= 4 \end{alignedat}\right\}$} \Item{24.} \raisebox{-0.5\baselineskip}{$\left.\begin{aligned} \frac{2x - 3}{4} - \frac{y - 8}{5} &= \frac{y + 3}{4} \\ \frac{x - 7}{3} + \frac{4y + 1}{11} &= 3 \end{aligned}\right\}$} \Item{25.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} \frac{x - 2y}{6} &- \frac{x + 3y}{4} &&= \frac{3}{2} \\ \frac{2x - y}{6} &- \frac{3x + y}{4} &&= \frac{5y}{4} \end{alignedat}\right\}$} \Item{26.} \raisebox{-0.5\baselineskip}{$\left.\begin{alignedat}{2} \frac{x}{a + b} &+ \frac{y}{a - b} &&= \frac{1}{a - b} \\ \frac{x}{a + b} &- \frac{y}{a - b} &&= \frac{1}{a + b} \end{alignedat}\right\}$} \begin{Remark}[Note.] To find $x$ in problem~26, add the equations; to find~$y$, subtract one from the other. Do not clear of fractions. \end{Remark} \Paragraph{157. Problems involving Two Unknown Numbers.} Ex. If A gives B \$$10$, B~will have three times as much money as~A\@. If B gives A \$$10$, A~will have twice as much money as~B\@. How much has each? \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of dollars A has,} \\ \lintertext{and} y &= \text{the number of dollars B has.} \displaybreak[1] \\ \intertext{\indent Then, after A gives B \$$10,$} x - 10 &= \text{the number of dollars A has,} \\ y + 10 &= \text{the number of dollars B has.} \displaybreak[1] \\ \intertext{\indent Since B's money is now $3$~times A's, we have,} y + 10 &= 3(x - 10). \Tag{(1)} \displaybreak[1] \\ %% -----File: 133.png---Folio 127------- \intertext{\indent If B gives A \$$10$,} x + 10 &= \text{the number of dollars A has,} \\ y - 10 &= \text{the number of dollars B has.} \displaybreak[1] \\ \intertext{\indent Since A's money is now $2$~times B's, we have} x + 10 &= 2(y - 10). \Tag{(2)} \end{DPalign*} From the solution of equations (1) and (2), $x = 22$, and $y = 26$. Therefore A has \$$22$, and B has~\$$26$. \end{Soln} \Exercise{66.} \Item{1.} If A gives B \$$200$, A~will then have half as much money as~B; but if B gives A \$$200$, B~will have one-third as much as A\@. How much has each? \Item{2.} Half the sum of two numbers is~$20$, and three times their difference is~$18$. Find the numbers. \Item{3.} The sum of two numbers is~$36$, and their difference is equal to one-eighth of the smaller number increased by~$2$. Find the numbers. \Item{4.} If $4$~yards of velvet and $3$~yards of silk are sold for~\$$33$, and $5$~yards of velvet and $6$~yards of silk for~\$$48$, what is the price per yard of the velvet and of the silk? \Item{5.} If $7$~bushels of wheat and $10$~of rye are sold for~\$$15$, and $4$~bushels of wheat and $5$~of rye are sold for~\$$8$, what is the price per bushel of the wheat and of the rye? \Item{6.} If $12$~pounds of tea and $4$~pounds of coffee cost~\$$7$, and $4$~pounds of tea and $12$~pounds of coffee cost~\$$5$, what is the price per pound of tea and of coffee? \Item{7.} Six horses and $7$~cows can be bought for~\$$1000$, and $11$~horses and $13$~cows for~\$$1844$. Find the value of a horse and of a cow. %% -----File: 134.png---Folio 128------- \Exercise{67.} Ex. A certain fraction becomes equal to~$\frac{1}{2}$ if $2$~is added to its numerator, and equal to~$\frac{1}{3}$ if $3$~is added to its denominator. Find the fraction. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} \frac{x}{y} &= \text{the required fraction.} \\ \lintertext{\indent Then} \frac{x + 2}{y} &= \frac{1}{2}, \\ \lintertext{and} \frac{x}{y + 3} &= \frac{1}{3}. \end{DPalign*} The solution of these equations gives $7$ for~$x$, and $18$ for~$y$. Therefore the required fraction is~$\frac{7}{18}$. \end{Soln} \Item{1.} If the numerator of a certain fraction is increased by~$2$ and its denominator diminished by~$2$, its value will be~$1$. If the numerator is increased by the denominator and the denominator is diminished by~$5$, its value will be~$5$. Find the fraction. \Item{2.} If $1$~is added to the denominator of a fraction, its value will be~$\frac{1}{2}$. If $2$~is added to its numerator, its value will be~$\frac{3}{5}$. Find the fraction. \Item{3.} If $1$~is added to the numerator of a fraction, its value will be~$\frac{1}{5}$. If $1$~is added to its denominator, its value will be~$\frac{1}{7}$. Find the fraction. \Item{4.} If the numerator of a fraction is doubled and its denominator diminished by~$1$, its value will be~$\frac{1}{2}$. If its denominator is doubled and its numerator increased by~$1$, its value will be~$\frac{1}{7}$. Find the fraction. \Item{5.} In a certain proper fraction the difference between the numerator and the denominator is~$15$. If the numerator is multiplied by~$4$ and the denominator increased by~$6$, its value will be~$1$. Find the fraction. %% -----File: 135.png---Folio 129------- \Exercise{68.} The expression $64$ means $60 + 4$, that is, $10$~\emph{times} $6 + 4$, and has for its \emph{digits} $6$~and~$4$. If the digits were unknown and represented by $x$~and~$y$, the number would be represented by~$10x + y$. Ex. The sum of the two digits of a number is~$10$, and if $18$~is added to the number, the digits will be reversed. Find the number. \begin{Soln} \begin{DPalign*}[m] \lintertext{\indent Let} x &= \text{the tens' digit,} \\ \lintertext{and} y &= \text{the units' digit.} \\ \lintertext{\indent Then} 10x + y &= \text{the number.} \displaybreak[1] \\ \lintertext{\indent Hence} x + y &= 10, \Tag{(1)} \\ \lintertext{and} 10x + y + 18 &= 10y + x. \Tag{(2)} \displaybreak[1] \\ \lintertext{\indent From (2),} 9x - 9y &= -18, \\ \lintertext{or} x - y &= -2. \Tag{(3)} \displaybreak[1] \\ \lintertext{\indent \rlap{Add (1) and (3),}} 2x &= 8, \\ \lintertext{and therefore} x &= 4. \\ \lintertext{\indent \rlap{Subtract (3) from (1),}} 2y &= 12, \\ \lintertext{and therefore} y &= 6. \end{DPalign*} Therefore the number is~$46$. \end{Soln} \Item{1.} The sum of the two digits of a number is~$9$, and if $9$ is added to the number, the digits will be reversed. Find the number. \Item{2.} A certain number of two digits is equal to eight times the sum of its digits, and if $45$~is subtracted from the number, the digits will be reversed. Find the number. \Item{3.} The sum of a certain number of two digits and the number formed by reversing the digits is~$132$, and the difference of these numbers is~$18$. Find the numbers. \Item{4.} The sum of the two digits of a number is~$9$, and if the number is divided by the sum of its digits, the quotient is~$6$. Find the number. %% -----File: 136.png---Folio 130------- \Exercise{69.} Ex. A sum of money, at simple interest, amounted to \$$2480$ in $4$~years, and to \$$2600$ in $5$~years. Find the sum and the rate of interest. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of dollars in the principal,} \\ \lintertext{and} y &= \text{the rate of interest.} \end{DPalign*} The interest for one year is $\dfrac{y}{100}$ of the principal; that is, $\dfrac{xy}{100}$. For $4$~years the interest is~$\dfrac{4xy}{100}$, and for $5$~years~$\dfrac{5xy}{100}$. The amount is principal $+$~interest, \begin{DPalign*} \lintertext{or} x + \frac{4xy}{100} &= 2480. \\ x + \frac{5xy}{100} &= 2600. \\ \lintertext{\indent Hence} 100x + 4xy &= 248,000. \Tag{(1)} \\ 100x + 5xy &= 260,000. \Tag{(2)} \displaybreak[1] \\ \intertext{\indent Divide (1) by~$4$ and (2) by~$5$, and we have} 25x + xy &= 62,000 \\ 20x + xy &= 52,000 \displaybreak[1] \\ \lintertext{\indent Subtract,} 5x \PadTo{{}+ xy}{} &= 10,000. \displaybreak[1] \\ \lintertext{\indent Therefore} \PadTo{5x}{x} \PadTo{{}+ xy}{} &= \PadTo{10,000}{2000}. \end{DPalign*} Substitute the value of~$x$ in~(1), $y = 6$. Therefore the sum is \$$2000$, and the rate~$6$%. \end{Soln} \Item{1.} A sum of money, at simple interest, amounted in $5$~years to~\$$3000$, and in $6$~years to~\$$3100$. Find the sum and the rate of interest. \Item{2.} A sum of money, at simple interest, amounted in $10$~months to~\$$1680$, and in $18$~months to~\$$1744$. Find the sum and the rate of interest. \Item{3.} A man has \$$10,000$ invested, a part at~$4$\%, and the remainder at~$5$\%. The annual income from his $4$\%~investment is \$$40$~more than from his $5$\%~investment. Find the sum invested at~$4$\% and at~$5$\%. %% -----File: 137.png---Folio 131------- \Exercise{70.} \Section{Miscellaneous Examples.} \Item{1.} Half the sum of two numbers is~$20$; and $5$~times their difference is~$20$. Find the numbers. \Item{2.} A certain number when divided by a second number gives $7$ for a quotient and $4$ for a remainder. If three times the first number is divided by twice the second number, the quotient is~$11$ and the remainder~$4$. Find the numbers. \Item{3.} A fraction becomes $\frac{4}{5}$ in value by the addition of~$2$ to its numerator and $3$~to its denominator. If $2$~is subtracted from its numerator and $1$~from its denominator, the value of the fraction is~$\frac{3}{4}$. Find the fraction. \Item{4.} A farmer sold $50$~bushels of wheat and $30$~of barley for $74$~dollars; and at the same prices he sold $30$~bushels of wheat and $50$~bushels of barley for $70$~dollars. What was the price of the wheat and of the barley per bushel? \Item{5.} If A gave \$$10$ to~B, he would then have three times as much money as~B; but if B gave \$$5$ to~A, A~would have four times as much as~B\@. How much has each? \Item{6.} A and B have together \$$100$. If A~were to spend one-half of his money, and B~one-third of his, they would then have only \$$55$ between them. How much money has each? \Item{7.} A fruit-dealer sold $6$~lemons and $3$~oranges for $21$~cents, and $3$~lemons and $8$~oranges for $30$~cents. What was the price of each? \Item{8.} If A gives me $10$~apples, he will have just twice as many as~B\@. If he gives the $10$~apples to~$B$ instead of to me, A~and~B will each have the same number. How many apples has each? %% -----File: 138.png---Folio 132------- \Chapter{XII.}{Quadratic Equations.} \Paragraph{158.} An equation which contains the \emph{square} of the unknown number, but no higher power, is called a \Defn{quadratic equation}. \Paragraph{159.} A quadratic equation which involves but one unknown number as~$x$, can contain only: 1. involving the square of~$x$. 2. involving the first power of~$x$. 3. which do not involve~$x$. Collecting similar , every quadratic equation can be made to assume the form \[ ax^{2} + bx + c = 0, \] where $a$,~$b$, and~$c$ are known numbers, and $x$~the unknown number. If $a$,~$b$,~$c$ are numbers expressed by figures, the equation is a \Defn{numerical quadratic}. If $a$,~$b$,~$c$ are numbers represented wholly or in part by letters, the equation is a \Defn{literal quadratic}. \Paragraph{160.} In the equation $ax^{2} + bx + c = 0$, $a$,~$b$, and~$c$ are called the \Defn{coefficients} of the equation. The third term,~$c$, is called the \Defn{constant term}. If the first power of~$x$ is wanting, the equation is a \Defn{pure quadratic}; in this case $b = 0$. If the first power of~$x$ is present, the equation is an \Defn{affected} or \Defn{complete quadratic}. %% -----File: 139.png---Folio 133------- \Section{Pure Quadratic Equations.} \Paragraph{161. Examples.} \Item{1.} Solve the equation $5x^{2} - 48 = 2x^{2}$. \begin{Soln} \begin{DPalign*} \lintertext{\indent We have} 5x^{2} - 48 &= 2x^{2}. \\ \lintertext{\indent Collect the ,} 3x^{2} &= 48. \displaybreak[1] \\ \lintertext{\indent Divide by~$3$,} x^{2} &= 16. \\ \lintertext{\indent Extract the square root,} x &= ±4. \end{DPalign*} The sign~$±$ before the~$4$, read \emph{plus or minus}, shows that the root is either $+$~or~$-$. For $(+4) × (+4) = 16$, and $(-4) × (-4) = 16$ The square root of any number is positive or negative. Hitherto we have given only the positive value. In this chapter we shall give both values. This sign~$\surd$, called the \Defn{radical sign}, is used to indicate that a root is to be extracted. Thus $\sqrt{4}$~means the square root of~$4$ is required. $\sqrt[3]{4}$~means the third root of~$4$ is required; the small figure placed over the radical sign is called the \Defn{index} of the root, and shows the root required. \end{Soln} \Item{2.} Solve the equation $3x^{2} - 15 = 0$. \begin{Soln} \begin{DPalign*} \lintertext{\indent We have} 3x^{2} &= 15, \\ \lintertext{or} x^{2} &= 5. \\ \lintertext{\indent Extract the square root,} x &= ±\sqrt{5}. \end{DPalign*} The roots cannot be found exactly, since the square root of~$5$ cannot be found exactly; it can, however, be determined approximately to any required degree of accuracy; for example, the roots lie between $2.23606$ and $2.23607$; and between $-2.23606$ and~$-2.23607$. \end{Soln} \Item{3.} Solve the equation $3x^{2} + 15 = 0$. \begin{Soln} \begin{DPalign*} \lintertext{\indent We have} 3x^{2} &= -15, \\ \lintertext{or} x^{2} &= -5. \\ \lintertext{\indent Extract the square root,} x &= ±\sqrt{-5}. \end{DPalign*} There is no square root of a negative number, since the square of any number, positive or negative, is positive; $(-5) × (-5) = +25$. The square root of~$-5$ differs from the square root of~$+5$ in that the latter can be found as accurately as we please, while the former cannot be found at all. \end{Soln} %% -----File: 140.png---Folio 134------- \Paragraph{162.} A root which can be found exactly is called an \Defn{exact} or \Defn{rational} root. Such roots are either whole numbers or fractions. A root which is indicated but can be found only approximately is called a \Defn{surd}. Such roots involve the roots of imperfect powers. Rational and surd roots are together called \Defn{real} roots. A root which is indicated but cannot be found, either exactly or approximately, is called an \Defn{imaginary} root. Such roots involve the even roots of negative numbers. \Exercise{71.} Solve: \begin{multicols}{2} \Item{1.} $5x^{2} - 2 = 3x^{2} + 6$. \Item{2.} $3x^{2} + 1 = 2x^{2} + 10$. \Item{3.} $4x^{2} - 50 = x^{2} + 25$. \Item{4.} $(x - 6)(x + 6) = 28$. \end{multicols} \Item{5.} $(x - 5)(x + 5) = 24$. \Item{6.} $3(x^{2} - 11) + 2(x^{2} - 5) = 82$. \Item{7.} $11(x^{2} + 5) + 6(3 - x^{2}) = 198$. \Item{8.} $5x^{2} + 3 - 2(17 - x^{2}) = 32$. \Item{9.} $4(x + 1) - 4(x - 1) = x^{2} - 1$. \Item{10.} $86 - 52x = 2(8 - x)(2 - 3x)$. \Item{11.} Find two numbers that are to each other as $3$~to~$4$, and the difference of whose squares is~$112$. \begin{Remark}[Hint.] Let $3x$~stand for the smaller and $4x$~for the larger number. \end{Remark} \Item{12.} A boy bought a number of oranges for $36$~cents. The price of an orange was to the number bought as $1$~to~$4$. How many oranges did he buy, and how many cents did each orange cost? \Item{13.} A certain street contains $144$~square rods, and the length is $16$~times the width. Find the width. %% -----File: 141.png---Folio 135------- \Item{14.} Find the number of rods in the length, and in the width of a rectangular field containing $3\frac{3}{5}$~acres, if the length is $4$~times the width. \Section{Affected Quadratic Equations.} \Paragraph{163.} Since \[ (x + b)^{2} = x^{2} + 2bx + b^{2}, \quad\text{and}\quad (x - b)^{2} = x^{2} - 2bx + b^{2}, \] it is evident that the expression $x^{2} + 2bx$ or $x^{2} - 2bx$ lacks only the \emph{third term},~$b^{2}$, of being a perfect square. This third term is the square of half the coefficient of~$x$. Every affected quadratic may be made to assume the form $x^{2} + 2bx = c$ or $x^{2} - 2bx = c$, by dividing the equation through by the coefficient of~$x^{2}$. To \textbf{solve} such an equation: The first step is to add to both \emph{the square of half the coefficient of~$x$}. This is called \emph{completing the square}. The second step is to \emph{extract the square root} of each member of the resulting equation. The third step is to \emph{reduce} the two resulting simple equations. \Item{1.} Solve the equation $x^{2} - 8x = 20$. \begin{Soln} \begin{DPalign*} \lintertext{\indent We have} x^{2} - 8x &= 20. \\ \lintertext{\indent Complete the square,} x^{2} - 8x + 16 &= 36. \\ \lintertext{\indent Extract the square root,} x - 4 &= ±6. \displaybreak[1] \\ \lintertext{\indent Reduce, using the upper \rlap{sign,}} x &= 4 + 6 = 10, \\ \lintertext{or using the lower sign,} x &= 4 - 6 = -2. \end{DPalign*} The roots are $10$ and~$-2$. by putting these numbers for~$x$ in the given equation. \[ \begin{array}{rcl<{\qquad}|>{\qquad}rcl} x &=& 10, & x &=& -2, \\ 10^{2} - 8(10) &=& 20, & (-2)^{2} - 8(-2) &=& 20, \\ 100 - 80 &=& 20. & 4 + 16 &=& 20. \\ \end{array} \] \end{Soln} %% -----File: 142.png---Folio 136------- \Item{2.} Solve the equation $\dfrac{x + 1}{x - 1} = \dfrac{4x - 3}{x + 9}$. \begin{Soln} \begin{DPalign*} \lintertext{\indent Free from fractions,} (x + 1)(x + 9) &= (x - 1)(4x - 3). \\ \lintertext{\indent Therefore,} -3x^{2} + 17x &= -6. \end{DPalign*} Since the square root of a negative number cannot be taken, the coefficient of~$x^{2}$ must be changed to~$+$. \begin{DPalign*} \lintertext{\indent Divide by~$-3$,} x^{2} - \tfrac{17}{3}x &= 2. \displaybreak[1] \\ \intertext{\indent Half the coefficient of~$x$ is $\frac{1}{2}$~of $-\frac{17}{3} = -\frac{17}{6}$, and the square of~$-\frac{17}{6}$ is~$\frac{289}{36}$. Add the square of~$-\frac{17}{6}$ to both sides, and we have} x^{2} - \frac{17x}{3} + \left(\frac{17}{6}\right)^{2} &= 2 + \frac{289}{36}. \displaybreak[1] \\ \lintertext{\indent Now} 2 + \frac{289}{36} = \frac{72}{36} + \frac{289}{36} &= \frac{361}{36}, \\ \lintertext{therefore,} x^{2} - \tfrac{17}{3}x + \left(\frac{17}{6}\right)^{2} &= \frac{361}{36}. \displaybreak[1] \\ \lintertext{\indent \rlap{Extract the root,}} x - \frac{17}{6} &= ±\frac{19}{6}. \displaybreak[1] \\ \lintertext{\indent Reduce,} x - \frac{17}{6} &= ±\frac{19}{6}. \\ \therefore x &= \frac{17}{6} + \frac{19}{6} = \frac{36}{6} = 6, \\ \lintertext{or} x &= \frac{17}{6} - \frac{19}{6} = -\frac{2}{6} = -\frac{1}{3}. \end{DPalign*} The roots are $6$~and~$-\dfrac{1}{3}$. by putting these numbers for~$x$ in the original equation. \[ \begin{array}[t]{rcl<{\qquad}|} x &=& 6. \\ \dfrac{6 + 1}{6 - 1} &=& \dfrac{24 - 3}{6 + 9}. \\ \dfrac{7}{5} &=& \dfrac{21}{15} \\ \dfrac{7}{5} &=& \dfrac{7}{5} \\ \end{array} \begin{array}[t]{>{\qquad}rcl} x &=& -\dfrac{1}{3} \\ \dfrac{-\dfrac{1}{3} + 1}{-\dfrac{1}{3} - 1} &=& \dfrac{-\dfrac{4}{3} - 3}{-\dfrac{1}{3} + 9}. \\ -\dfrac{2}{4} &=& -\dfrac{13}{26}. \end{array} \] \end{Soln} %% -----File: 143.png---Folio 137------- \PrintBreak \Exercise{72.} Solve: \begin{multicols}{2} \Item{1.} $x^{2} - 12x + 27 = 0$. \Item{2.} $x^{2} - 6x + 8 = 0$. \Item{3.} $x^{2} - 4 = 4x - 7$. \Item{4.} $5x^{2} - 4x-1 = 0$. \Item{5.} $4x - 3 = 2x - x^{2}$. \Item{6.} $9x^{2} - 24x + 16 = 0$. \Item{7.} $6x^{2} - 5x-1 = 0$. \Item{8.} $4x + 3 = x^{2} + 2x$. \Item{9.} $16x^{2} - 16x + 3 = 0$. \Item{10.} $3x^{2} - 10x + 3 = 0$. \Item{11.} $x^{2} - 14x - 51 = 0$. \Item{12.} $34x - x^{2} - 225 = 0$. \Item{13.} $x^{2} + x - 20 = 0$. \Item{14.} $x^{2} - x - 12 = 0$. \Item{15.} $2x^{2} - 12x = - 10$. \Item{16.} $3x^{2} + 12x - 36 = 0$. \Item{17.} $(2x - 1)^{2} + 9 = 6(2x - 1)$. \Item{18.} $6(9x^{2} - x) = 55(x^{2} - 1)$. \Item{19.} $32 - 3x^{2} - 10x = 0$. \Item{20.} $9x^{2} - 6x - 143 = 0$. \Item{21.} $\dfrac{x}{x - 1} - \dfrac{x - 1}{x} = \dfrac{3}{2}$. \Item{22.} $\dfrac{1}{x - 2} + \dfrac{2}{x + 2} = \dfrac{5}{6}$. \Item{23.} $\dfrac{5x + 7}{x - 1} = 3x + 11$. \Item{24.} $\dfrac{7}{x + 4} - \dfrac{1}{4 - x} = \dfrac{2}{3}$. \Item{25.} $\dfrac{2}{x + 3} + \dfrac{x + 3}{2} = \dfrac{10}{3}$. \Item{26.} $\dfrac{2x}{x + 2} + \dfrac{x + 2}{2x} = 2$. \Item{27.} $\dfrac{3(x - 1)}{x + 1} - \dfrac{2(x + 1)}{x - 1} = 5$. \Item{28.} $\dfrac{2x + 5}{2x - 5} = \dfrac{7x - 5}{2x}$. \Item{29.} $\dfrac{3x - 1}{4x + 7} = \dfrac{x + 1}{x + 7}$. \Item{30.} $\dfrac{2x - 1}{x + 3} = \dfrac{x + 3}{2x - 1}$. \Item{31.} $\dfrac{x + 4}{x - 4} - \dfrac{x + 2}{x - 3} = 1$. \Item{32.} $\dfrac{4}{x - 1} - \dfrac{5}{x + 2} = \dfrac{1}{2}$. \Item{33.} $\dfrac{2}{x - 1} = \dfrac{3}{x - 2} + \dfrac{2}{x - 4}$. \Item{34.} $\dfrac{5}{x - 2} - \dfrac{3}{x - 1} = \dfrac{1}{2}$. \Item{35.} $\dfrac{x}{7 - x} + \dfrac{7 - x}{x} = \dfrac{29}{10}$. \Item{36.} $\dfrac{2x - 1}{x - 1} + \dfrac{1}{6} = \dfrac{2x - 3}{x - 2}$. \end{multicols} %% -----File: 144.png---Folio 138------- \ScreenBreak \Paragraph{164. Problems involving Quadratics.} Problems which involve quadratic equations apparently have two solutions, since a quadratic equation has two roots. When both roots of the quadratic equation are positive integers, they will, in general, both be issible solutions. Fractional and negative roots will in some problems give issible solutions; in other problems they will not give issible solutions. The reason that every root of the equation will not always satisfy the conditions of the problem is that the problem may have certain restrictions, expressed or implied, that cannot be expressed in the equation. No difficulty will be found in selecting the result which belongs to the particular problem we are solving. Sometimes, by a change in the statement of the problem, we may form a new problem which corresponds to the result that was inapplicable to the original problem. Here as in simple equations x stands for an unknown \emph{number}. \Item{1.} The sum of the squares of two consecutive numbers is~$41$. Find the numbers. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{one number,} \\ \lintertext{and} x + 1 &= \text{the other.} \\ \lintertext{\indent Then} x^{2} + (x + 1)^{2} &= \text{the sum of the squares;} \\ \lintertext{but} 41 &= \text{the sum of the squares.} \end{DPalign*} \begin{align*} \therefore x^{2} + (x + 1)^{2} &= 41. \\ x^{2} + x^{2} + 2x + 1 &= 41. \\ 2x^{2} + 2x &= 40. \\ x^{2} + x &= 20. \end{align*} The solution of this equation gives $x = 4$, or~$-5$. The positive root~$4$ gives for the numbers $4$~and~$5$. \end{Soln} The negative root~$-5$ is inapplicable to the problem, as \emph{consecutive numbers} are understood to be integers which follow each other in the common scale: $1$,~$2$, $3$, $4\dots$. %% -----File: 145.png---Folio 139------- \Item{2.} In a certain nest seven times the number of birds in the nest is equal to twice the square of the number increased by~$3$. Find the number. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of birds\Add{.}} \\ \lintertext{\indent Then} 7x &= \text{$7$~times the number} \\ \lintertext{and} 2x^{2} + 3 &= \text{twice the square of the number plus~$3$.} \intertext{\indent As these two expressions are equal we have} 2x^{2} + 3 &= 7x\Add{.} \end{DPalign*} The solution of this \emph{equation} gives $x = 3$ or $x = \frac{1}{2}$. The value $\frac{1}{2}$ is not applicable to the \emph{problem} for the number of birds must be a whole number. \end{Soln} \Item{3.} A cistern has two pipes. By one of them it can be filled $6$~hours sooner than by the other, and by both together in $4$~hours. Find the time it will take each pipe alone to fill it. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of hours it takes the smaller pipe.} \\ \lintertext{\indent Then} x - 6 &= \text{the number of hours it takes the larger pipe.} \end{DPalign*} \begin{DPalign*} \lintertext{\indent Therefore} \frac{1}{x} + \frac{1}{x - 6} &= \text{the part both can fill in one hour.} \\ \lintertext{\indent But} \frac{1}{4} &= \text{the part both can fill in one hour.} \\ \frac{1}{x} + \frac{1}{x - 6} &= \frac{1}{4} \end{DPalign*} The solution of this \emph{equation} gives $x = 12$ or $x = 2$. The value~$2$ is not applicable to the \emph{problem}. Therefore it takes one pipe $12$~hr.\ and the other $6$~hr. \end{Soln} \Item{4.} A rug is $1$~yard longer than it is broad. The number of sq.~yds.\ in the rug is~$12$. Find its length and breadth. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the number of yards in the breadth\Add{.}} \\ \lintertext{\indent Then} x + 1 &= \text{the number of yards in the length} \\ \lintertext{and} x(x + 1) &= \text{the number of sq yds in the rug\Add{.}} \\ \lintertext{\indent Hence} x(x + 1) &= 12\Add{.} \end{DPalign*} The solution of this equation gives $x = 3$ or $x = -4$. The dimensions are therefore $3$~yards and $4$~yards. \end{Soln} %% -----File: 146.png---Folio 140------- \Exercise{73.} \Item{1.} Find two numbers whose sum is~$11$, and whose product is~$30$. \Item{2.} Find two numbers whose difference is~$10$, and the sum of whose squares is~$250$. \Item{3.} A man is five times as old as his son, and the square of the son's age diminished by the father's age is~$24$. Find their ages. \Item{4.} A number increased by its square is equal to nine times the next higher number. Find the number. \Item{5.} The square of the sum of any two consecutive numbers lacks~$1$ of being twice the sum of the squares of the numbers. Show that this statement is true. \Item{6.} The length of a rectangular court exceeds its breadth by $2$~rods. If the length and breadth were each increased by $3$~rods, the area of the court would be $80$~square rods. Find the dimensions of the court. \Item{7.} The area of a certain square will be doubled, if its dimensions are increased by $6$~feet and $4$~feet respectively. Find its dimensions. \Item{8.} The perimeter of a rectangular floor is $76$~feet and the area of the floor is $360$~square feet. Find the dimensions of the floor. \Item{9.} The length of a rectangular court exceeds its breadth by $2$~rods, and its area is $120$~square rods. Find the dimensions of the court. \Item{10.} The combined ages of a father and son amount to $64$~years. Twice the father's age exceeds the square of the son's age by $8$~years. Find their respective ages. %% -----File: 147.png---Folio 141------- \Exercise{74.} Ex. A boat sails $30$~miles at a uniform rate. If the rate had been $1$~mile an hour more, the time of the sailing would have been $1$~hour less. Find the rate of the sailing. \begin{Soln} \begin{DPalign*} \lintertext{\indent Let} x &= \text{the rate in miles per hour.} \\ \lintertext{\indent Then} \frac{30}{x} &= \text{the number of hours.} \end{DPalign*} On the other supposition the rate would have been $x + 1$~miles an hour and the time~$\dfrac{30}{x + 1}$. \begin{DPalign*} \lintertext{\indent Hence} \frac{30}{x} - \frac{30}{x + 1} &= \text{the difference in hours for the sailing.} \\ \lintertext{\indent But} 1 &= \text{the difference in hours for the sailing.} \\ \frac{30}{x} - \frac{30}{x + 1} &= 1\Add{.} \end{DPalign*} The solution of this equation gives $x = 5$, or $x = -6$. Therefore, the rate of the sailing is $5$~miles an hour. \end{Soln} \Item{1.} A boat sails $30$~miles at a uniform rate. If the rate had been $1$~mile an hour less, the time of the sailing would have been $1$~hour more. Find the rate of the sailing. \Item{2.} A laborer built $35$~rods of stone wall. If he had built $2$~rods less each day, it would have taken him $2$~days longer. How many rods did he build a day on the average? \Item{3.} A man bought flour for~\$$30$. Had he bought $1$~barrel more for the same sum, the flour would have cost him \$$1$~less per barrel. How many barrels did he buy? \Item{4.} A man bought some knives for~\$$6$. Had he bought $2$~less for the same money, he would have paid $25$~cents more for each knife. How many knives did he buy? \Item{5.} What number exceeds its square root by~$30$? \begin{Remark}[Hint.] Let $x^{2}$ denote the number. \end{Remark} %% -----File: 148.png---Folio 142------- \Chapter{XIII.}{Arithmetical Progression.} \Paragraph{165.} A series of numbers is said to form an \Defn{Arithmetical Progression} if the difference between any term and the preceding term is the same throughout the series. \begin{Remark} Thus $a$, $b$, $c$, $d$, etc., are in arithmetical progression if $b - a$, $c - b$, $d - c$,~etc., are all equal. \end{Remark} \Paragraph{166.} This difference is called the \Defn{common difference} of the progression, and is represented by~$d$. If $d$~is positive, the progression is an \emph{increasing} series; if $d$~is negative, the progression is a \emph{decreasing} series. What is the common difference in each of the following series? \[ \begin{array}{r*{4}{>{\quad}r}} 1, & \Neg4, & 7, & 10, & \dots \\ 5, & 7, & 9, & 11, & \dots \\ 10, & 9, & 8, & 7, & \dots \\ 7, & 3, & -1, & -5, & \dots \\ \end{array} \] \Paragraph{167.} If the first term of an arithmetical progression is represented by~$a$ and the common difference by~$d$, then \begin{alignat*}{2} &\text{the \emph{second} term will be } && a + d, \\ &\text{the \emph{third} term will be } && a + 2d, \\ &\text{the \emph{fourth} term will be } && a + 3d, \end{alignat*} and so on, the coefficient of~$d$ in each term being always less by~$1$ than the \emph{number of the term}. Hence the $n$th~term will be $a + (n - 1)d$. If we represent the $n$th~term by~$l$, we have \[ l = a + (n - 1)d. \Tag{Formula (1)} \] %% -----File: 149.png---Folio 143------- \Paragraph{168.} We can, therefore, find any term of an arithmetical progression if the first term and common difference are given, or if any \emph{two} are given. \Item{1.} Find the 10th~term of an arithmetical progression if the 1st~term is~$3$ and the common difference is~$4$. \begin{Soln} By formula~(1), the 10th~term is~$3 + (10 - 1)4$, or~$39$. \end{Soln} \Item{2.} If the 8th~term of an arithmetical progression is~$25$, and the 23d~term~$70$, find the series. \begin{Soln} \begin{DPalign*} \lintertext{\indent By formula (1),} &\text{the 23d term is $a + 22d$,} \\ \lintertext{and} &\text{the 8th term is $a + 7d$.} \end{DPalign*} \begin{DPalign*} \lintertext{\indent Therefore,} a + 22d &= 70 \\ \lintertext{and} a + \Z7d &= 25\Add{.} \displaybreak[1] \\ \lintertext{\indent Subtract,} 15d &= 45 \\ \lintertext{and} d &= 3, \\ \lintertext{whence} a &= 4. \end{DPalign*} The series is therefore $4$, $7$, $10$, $13$,~etc. \end{Soln} \Paragraph{169. Arithmetical Mean.} If three numbers are in arithmetical progression, the middle number is called the arithmetical mean of the other two numbers. If $a$, $A$, $b$ are in arithmetical progression, $A$~is the arithmetical mean of $a$~and~$b$. Hence, by the definition of an arithmetical series, \begin{DPalign*} A - a &= b - A, \\ \lintertext{whence} A &= \frac{a + b}{2}. \rintertext{Formula (2)} \end{DPalign*} \begin{Theorem} Hence, the arithmetical mean of any two numbers is found by taking half their sum. \end{Theorem} \Paragraph{170.} Sometimes it is required to insert several arithmetical means between two numbers. %% -----File: 150.png---Folio 144------- If $m = {}$the number of means, and $n = {}$the whole number of , then $m + 2 = n$. If $m + 2$ is substituted for~$n$ in formula~(1), \begin{DPalign*} l &= a + (n - 1)d, \\ \lintertext{the result is} l &= a + (m + 1)d. \displaybreak[1] \\ \lintertext{\indent By transposing~$a$,} l - a &= (m + 1) d. \\ \therefore \frac{l - a}{m + 1} &= d. \Tag{\llap{Formula (3)}} \end{DPalign*} \begin{Remark} Thus, if it be required to insert six means between $3$~and~$17$, the value of~$d$ is found to be $\dfrac{17 - 3}{6 + 1} = 2$; and the series will be $3$,~$5$, $7$, $9$, $11$, $13$, $15$,~$17$. \end{Remark} \Exercise{75.} \Item{1.} Find the 25th~term in the series $3$, $6$, $9$,~$\dots$. \Item{2.} Find the 13th~term in the series $50$, $49$, $48$,~$\dots$. \Item{3.} Find the 15th~term in the series $\frac{1}{7}$, $\frac{3}{7}$, $\frac{5}{7}$,~$\dots$. \Item{4.} Find the 19th~term in the series $\frac{1}{4}$, $-\frac{1}{4}$, $-\frac{3}{4}$,~$\dots$. \Item{5.} Find the 10th~term in an arithmetical progression whose 1st~term is~$5$ and 3d~term~$9$. \Item{6.} Find the 11th~term in an arithmetical progression whose 1st~term is~$10$ and whose 6th~term is~$5$. \Item{7.} If the 3d~term of an arithmetical progression is~$20$ and the 13th~term is~$100$, what is the 20th~term? \Item{8.} Which term of the series $5$, $7$, $9$, $11$,~$\dots$, is~$43$? \Item{9.} Which term of the series $\frac{4}{3}$, $\frac{3}{2}$, $\frac{5}{3}$,~$\dots$, is~$18$? \Item{10.} What is the arithmetical mean of $20$~and~$32$? \Item{11.} What is the arithmetical mean of $a + b$ and $a - b$? \Item{12.} Insert $8$ arithmetical means between $20$~and~$29$. %% -----File: 151.png---Folio 145------- \Paragraph{171. To Find the Sum of Any Number of of an Arithmetical Series.} If $l$ denote the last term, $a$~the first term, $n$~the number of , $d$~the common difference, and $s$~the sum of the , it is evident that the series beginning with the first term will be $a$, $a + d$, $a + 2d$,~etc., and beginning with the last term will be $l$, $l - d$, $l - 2d$,~etc. Therefore, \begin{gather*} \begin{array}{r*{12}{c}} s &=& a &+& (a + d) &+& (a + 2d) &+& \Add{\dots} &+& (l - d) &+& l, \rlap{\quad\text{or}} \\ s &=& l &+& (l - d) &+& (l - 2d) &+& \Add{\dots} &+& (a + d) &+& a \\ \hline 2s &=& (a + l) &+& (a + l) &+& (a + l) &+& \Add{\dots} &+& (a + l) &+& (a + l) \\ 2s &=& \multicolumn{11}{l}{\text{$(a + l)$ taken as many times as there are \emph{},}} \end{array} \displaybreak[1] \\ \begin{aligned}[b] 2s &= n(a + l), \\ \text{and } s &= \frac{n}{2}(a + l)\Add{.} \end{aligned} \Tag{Formula (4)} \end{gather*} Putting for $l$~its value $a + (n - 1)d$, in formula~(4), we have \begin{align*} s &= \frac{n}{2}\bigl\{a + a + (n - 1)d\bigr\} \\ &= \frac{n}{2}\bigl\{2a + (n - 1)d\bigr\} \Tag{Formula (5)} \end{align*} \Item{1.} Find the sum of the first $16$~ of the series $5$, $7$, $9$,~$11$\DPtypo{,}{.} \begin{Soln} \begin{DPalign*} \lintertext{\indent Here} a &= 5,\quad d = 2,\quad n = 16\Add{.} \\ \intertext{\indent Putting these values in formula~(5) we have} s &= \tfrac{16}{2}(10 + 15 × 2) \\ &= 320 \end{DPalign*} \end{Soln} \Item{2.} Show that the sum of any number of odd numbers, beginning with~$1$, is a square number. \begin{Soln} The series of odd numbers is $1$, $3$, $5$, $7$,~$\dots$. %% -----File: 152.png---Folio 146------- \begin{DPalign*} \lintertext{\indent Here} a &= 1 \quad\text{and}\quad d = 2\Add{.} \intertext{\indent Putting these values in formula (5) we have} s &= \frac{n}{2} \bigl\{2 + (n - 1)2\bigr\} \\ &= \frac{n}{2} × 2n \\ &= n^{2}\Add{.} \end{DPalign*} Therefore the sum of the first $5$~odd numbers is~$5^{2}$ or~$25$\Add{,} of the first $8$ odd numbers is~$8^{2}$ or~$64$, and so on. \end{Soln} \Item{3.} The sum of $20$~ of an arithmetical progression is~$420$, and the first term is~$2$. Find the common difference. \begin{Soln} \begin{DPalign*} \lintertext{\indent Here} s &= 420,\quad n = 20, \quad\text{and}\quad a = 2\Add{.} \\ \intertext{\indent Putting these values in formula~(5), we have} 420 &= \tfrac{20}{2}(4 + 19d) \\ &= 40 + 190d \\ 190d &= 380 \\ \Add{\therefore} d &= 2\Add{.} \end{DPalign*} Therefore the common difference is~$2$. \end{Soln} \Exercise{76.} \Item{1.} Find the sum of $3$, $5$, $7$, $\dots$, to $20$~. \Item{2.} Find the sum of $14$, $14\frac{1}{2}$, $15$, $\dots$, to $12$~. \Item{3.} Find the sum of $\frac{7}{6}$, $1$, $\frac{5}{6}$, $\dots$, to $10$~. \Item{4.} Find the sum of $-7$, $-5$, $-3$, $\dots$, to $16$~. \Item{5.} Find the sum of $12$, $9$, $6$, $\dots$, to $21$~. \Item{6.} Find the sum of $-10\frac{1}{2}$, $-9$, $-7\frac{1}{2}$, $\dots$, to $25$~. \Item{7.} The sum of three numbers in arithmetical progression is~$9$, and the sum of their squares is~$35$. Find the numbers. \begin{Remark}[Hint.] Let $x - y$, $x$, $x + y$, stand for the numbers. \end{Remark} %% -----File: 153.png---Folio 147------- \Item{8.} A common clock strikes the hours from $1$ to~$12$. How many times does it strike every $24$~hours? \Item{9.} The Greenwich clock strikes the hours from $1$ to~$24$. How many times does it strike in $24$~hours? \Item{10.} In a potato race each man picked up $50$~potatoes placed in line a yard apart, and the first potato one yard from the basket, picking up one potato at a time and bringing it to the basket. How many yards did each man run, the start being made from the basket? \Item{11.} A heavy body falling from a height falls $16.1$~feet the first second, and in each succeeding second $32.2$~feet more than in the second next preceding. How far will a body fall in $19$~seconds? \Item{12.} A stone dropped from a bridge reached the water in just $3$~seconds. Find the height of the bridge. (See Ex.~11.) \Item{13.} The arithmetical mean between two numbers is~$13$, and the mean between the double of the first and the triple of the second is~$33\frac{1}{2}$. Find the numbers. \Item{14.} Find three numbers of an arithmetical series whose sum shall be~$27$, and the sum of the first and second shall be~$frac{4}{5}$ of the sum of the second and third. \Item{15.} A travels uniformly $20$~miles a day; B~travels $8$~miles the first day, $12$~the second, and so on, in arithmetical progression. If they start Monday morning from the same place and travel in the same direction, how far apart will they be Saturday night? \Item{16.} The sum of three of an arithmetical progression is~$36$, and the square of the mean exceeds the product of the other two by~$49$. Find the numbers. %% -----File: 154.png---Folio 148------- \Chapter{XIV.}{Geometrical Progression.} \Paragraph{172.} A series of numbers is said to be in \Defn{Geometrical Progression} when the quotient of any term divided by the preceding term is the same throughout the series. \begin{Remark} Thus $a$, $b$, $c$, $d$, etc., are in geometrical progression if $\dfrac{b}{a} = \dfrac{c}{b} = \dfrac{d}{c}$,~etc. \end{Remark} \Paragraph{173.} This quotient is called the \Defn{common ratio}, and is represented by~$r$. State the common ratio of the following series: \[ \begin{array}{r*{4}{>{\quad}r}} 1, & 3, & \Neg9, &27, & \dots \\ 2, & 4, & 8, &16, & \dots \\ 16,& 8, & 4, &2, & \dots \\ \frac{2}{3}, & 1, & \frac{3}{2}, & \frac{9}{4}, & \dots \\ 4, & -2, & 1, & -\frac{1}{2}, & \dots \\ \end{array} \] \Paragraph{174.} If the first term of a geometrical progression is represented by~$a$, and the common ratio by~$r$, then \begin{align*} &\text{the \emph{second} term will be~$ar$,} \\ &\text{the \emph{third} term will be~$ar^{2}$,} \\ &\text{the \emph{fourth} term will be~$ar^{3}$,} \end{align*} and so on, the index of~$r$ being always less by~$1$ than the \emph{number of the term in the series}. Hence the $n$th~term will be~$ar^{n - 1}$. %% -----File: 155.png---Folio 149------- If we denote the $n$th~term by~$l$, we have \[ l = ar^{n - 1}. \Tag{Formula (1)} \] \Paragraph{175.} If the first term and common ratio are given, or if any \emph{two } are given, we can find the series. \Item{1.} Find the 5th~term of a geometrical progression if the first is~$3$ and the common ratio~$2$. \begin{Soln} In formula~(1), put $5$~for~$n$, $3$~for~$a$, and $2$~for~$r$. \begin{DPalign*} \lintertext{\indent Then} l &= 3 × 2^{4} = 48. \end{DPalign*} Therefore the 5th~term is~$48$. \end{Soln} \Item{2.} Find the geometrical series if the 5th~term is~$48$ and the 7th~term is~$192$. \begin{Soln} The 5th and 7th~ are $ar^{4}$~and~$ar^{6}$, respectively. \begin{DPalign*} \lintertext{\indent Whence} ar^{4} &= 48, \Tag{(1)} \\ \lintertext{and} ar^{6} &= 192. \Tag{(2)} \\ \lintertext{\indent Divide (2) by~(1),} r^{2} &= 4. \\ \therefore r &= ±2. \\ \lintertext{\indent From~(1),} a = \tfrac{48}{16} &= 3. \end{DPalign*} Therefore the series is $3$, $±6$, $12$, $±24$,~$\dots$. \end{Soln} \Paragraph{176. Geometrical Mean.} If three numbers are in geometrical progression, the middle number is called the \emph{geometrical mean} of the other two numbers. Hence, if $a$,~$G$,~$b$ are in geometrical progression, $G$~is the geometrical mean of $a$~and~$b$. By the definition of a geometrical progression, \begin{DPalign*} \frac{G}{a} &= \frac{b}{G}. \\ \therefore G^{2} &= ab, \\ \lintertext{and} G &= ± \sqrt{ab}. \Tag{Formula (2)} \end{DPalign*} \begin{Theorem}[Hence], the geometrical mean of any two numbers is the square root of their product. \end{Theorem} %% -----File: 156.png---Folio 150------- \PrintBreak \Paragraph{177. To Find the Sum of Any Number of of a Geometrical Progression.} If $l$~denote the last term, $a$~the first term, $n$~the number of , $r$~the common ratio, and $s$~the sum of the $n$~, then \begin{DPalign*} s &= a + ar + ar^{2} + ar^{3} + \dots+ ar^{n - 1}. \\ \lintertext{\indent Multiply by~$r$,} rs &= ar + ar^{2} + ar^{3} + \dots + ar^{n - 1} + ar^{n}. \end{DPalign*} Therefore, by subtracting the first equation from the second, \begin{DPalign*} rs - s &= ar^{n} - a, \\ \lintertext{or} (r - 1)s &= a(r^{n} - 1). \\ \therefore s &= \frac{a(r^{n} - 1)}{r - 1}. \Tag{Formula (3)} \end{DPalign*} \Paragraph{178.} When $r$~is $< 1$, this formula will be more convenient if written \[ s = \frac{a(1 - r^{n})}{1 - r}. \] \Item{1.} Find the sum of $8$~ of the series \[ 1,\quad 2,\quad 4,\quad \dots\Add{.} \] \begin{DPalign*} \lintertext{\indent Here} a &= 1,\quad r = 2,\quad n = 8. \\ \lintertext{\indent From formula~(3),} s &= 1(2^{8} - 1) = 255. \end{DPalign*} \Item{2.} Find the sum of $6$~ of the series \[ 2,\quad 3,\quad \tfrac{9}{2},\quad \dots\Add{.} \] \begin{DPalign*} \lintertext{\indent Here} a &= 2,\quad r = \tfrac{3}{2},\quad n = 6. \\ \lintertext{\indent From formula~(3),} s &= \frac{2\bigl\{(\frac{3}{2})^{6} - 1\bigr\}}{\frac{3}{2} - 1} \\ &= \frac{2\bigl\{\frac{729}{64} - 1\bigr\}}{\frac{1}{2}} \\ &= \frac{4\{729 - 64\}}{64} \\ &= 41\tfrac{9}{16}. \end{DPalign*} %% -----File: 157.png---Folio 151------- \Exercise{77.} \Item{1.} Find the 5th~term of $3$, $9$, $27$\Add{,}~$\dots$. \Item{2.} Find the 7th~term of $3$, $6$, $12$\Add{,}~$\dots$. \Item{3.} Find the 8th~term of $6$, $3$, $\frac{3}{2}$\Add{,}~$\dots$. \Item{4.} Find the 9th~term of $1$, $-2$, $4$\Add{,}~$\dots$. \Item{5.} Find the geometrical mean between $2$~and~$8$. \Item{6.} Find the common ratio if the 1st~and 3d~ are $2$~and~$32$. Find the sum of the series: \Item{7.} $3$, $9$, $27$, $\dots$ to $6$~. \Item{8.} $3$, $6$, $12$, $\dots$ to $8$~. \Item{9.} $6$, $3$, $\frac{3}{2}$, $\dots$ to $7$~. \Item{10.} $8$, $4$, $2$, $\dots$ to $8$~. \Item{11.} $64$, $32$, $16$, $\dots$ to $9$~. \Item{12.} $64$, $-32$, $16$, $\dots$ to $5$~. \Item{13.} $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{9}$, $\dots$ to $4$~. \Item{14.} If a blacksmith uses seven nails in putting a shoe on a horse's foot, and receives $1$~cent for the first nail, $2$~cents for the second nail, and so on, what does he receive for putting on the shoe? \Item{15.} If a boy receives $2$~cents for his first day's work, $4$~cents for his second day, $8$~cents for the third day, and so on for $12$~days, what will his wages amount to? \Item{16.} If the population of a city is $10,000$, and increases $10$\%~a year for four years, what will be its population at the end of the four years? (Here $l = ar^{4}$.) %% -----File: 158.png---Folio 152------- \Chapter{XV.}{Square and Cube Roots.} \Section{Square Roots of Compound Expressions.} \Paragraph{179.} Since the square of $a + b$ is $a^{2} + 2ab + b^{2}$, the square root of $a^{2} + 2ab + b^{2}$ is $a + b$. It is required to find a method of extracting the root $a + b$ when $a^{2} + 2ab + b^{2}$ is given. \begin{Soln} Ex. The first term,~$a$, of the root is obviously the square root of the first term,~$a^{2}$, in the expression. \[ \begin{array}{r*{3}{cr}l} & & a^{2} &+& 2ab &+& \TbBar{b^{2}} & a + b \\ \cline{8-8} & & a^{2} \\ \cline{3-3} 2a &+& \TbBar{b} & & 2ab &+& b^{2} \\ & & \TbBar{ } & & 2ab &+& b^{2} \\ \cline{4-7} \end{array} \] If the $a^{2}$ is subtracted from the given expression, the remainder is $2ab + b^{2}$\Add{.} Therefore the second term,~$b$, of the root is obtained when the first term of this remainder is divided by~$2a$; that is, by \emph{double the part of the root already found}. Also, since \[ 2ab + b^{2} = (2a + b)b, \] the divisor is \emph{completed by adding to the trial-divisor the new term of the root}\Add{.} \end{Soln} \ScreenBreak Ex. Find the square root of $25x^{2} - 20x^{3}y + 4x^{4}y^{2}$. \begin{Soln} \[ \begin{array}{rcccrll} & && & 25x^{2} & \TbBar{-20 x^{3}y + 4x^{4}y^{2}} & 5x - 2x^{2}y \\ \cline{7-7} \text{Here $a^{2}$} &=& (5x)^{2} &=& 25x^{2} \\ \cline{5-5} 2a + b &=& 10x &-& \TbBar{2x^{2}y} & -20x^{3}y + 4x^{4}y^{2} \\ & & & & \TbBar{ } & -20x^{3}y + 4x^{4}y^{2} \\ \cline{6-6} \end{array} \] The expression is \emph{arranged} according to the ascending powers of~$x$\Add{.} The square root of the first term is~$5x$, hence $5x$~is the first term of the root. $(5x)^{2}$ or $25x^{2}$ is subtracted, and the remainder is \[ -20x^{3}y + 4x^{4}y^{2}. \] The second term of the root, $-2x^{2}y$, is obtained by dividing $-20x^{3}y$ by~$10x$, the double of~$5x$, and this new term of the root is also annexed to the divisor,~$10x$, to complete the divisor. \end{Soln} %% -----File: 159.png---Folio 153------- \Paragraph{180.} The same method will apply to longer expressions, if care be taken to obtain the \emph{trial-divisor} at each stage of the process, \emph{by doubling the part of the root already found}, and to obtain the \emph{complete divisor by annexing the new term of the root to the trial-divisor}. \ScreenBreak Ex. Find the square root of \[ 1 + 10x^{2} + 25x^{4} + 16x^{6} - 24x^{5} - 20x^{3} - 4x. \] \begin{Soln} \[ %[** TN: Spacing hack] \qquad\makebox[0pt][c]{$\begin{array}{r*{2}{cr}lll} 16x^{6} &-& 24x^{5} &+& 25x^{4} &-20x^{3} + 10x^{2} &\TbBar{- 4x + 1} & 4x^{3} - 3x^{2} + 2x - 1 \\ \cline{8-8} 16x^{6} \\ \cline{1-1} \TbBar{\llap{$8x^{3} - 3x^{2}$}} &-& 24x^{5} &+& 25x^{4} \\ \TbBar{}&-& 24x^{5} &+& 9x^{4} \\ \cline{2-5} \multicolumn{4}{r|}{8x^{3} - 6x^{2} + 2x} & 16x^{4} &-20x^{3} + 10x^{2} \\ & & & \TbBar{ }& 16x^{4} &-12x^{3} + \Z4x^{2} \\ \cline{5-6} \multicolumn{5}{r|}{8x^{3} - 6x^{2} + 4x - 1} &-\Z8x^{3} + \Z6x^{2} & -4x + 1 \\ & & & & \TbBar{}&-\Z8x^{3} + \Z6x^{2} & -4x + 1 \\ \cline{6-7} \end{array}$} \] The expression is arranged according to the descending powers of~$x$. It will be noticed that each successive trial-divisor may be obtained by taking the preceding complete divisor with its \emph{last term doubled}. \end{Soln} \Exercise{78.} Find the square root of: \Item{1.} $a^{2} + 2ab + 2ac + b^{2} + 2bc + c^{2}$. \Item{2.} $x^{4} + 2x^{3} + 3x^{2} + 2x + 1$. \Item{3.} $x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4}$. \Item{4.} $4a^{4} - 12a^{3}b + 29a^{2}b^{2} - 30ab^{3} + 25b^{4}$. \Item{5.} $16x^{6} + 24x^{5}y + 9x^{4}y^{2} - 16x^{3}y^{3} - 12x^{2}y^{4} + 4y^{6}$. \Item{6.} $4x^{6} - 4x^{4}y^{2} + 12x^{3}y^{3} + x^{2}y^{4} - 6xy^{5} + 9y^{6}$. \Paragraph{181. Arithmetical Square Roots.} In the general method of extracting the square root of a number expressed by figures, the first step is to mark off the figures into \emph{groups}. %% -----File: 160.png---Folio 154------- Since $1 = 1^{2}$, $100 = 10^{2}$, $10,000 = 100^{2}$, and so on, it is evident that the square root of a number between $1$~and $100$ lies between $1$~and~$10$; of a number between $100$ and $10,000$ lies between $10$~and~$100$. In other words, the square root of a number expressed by \emph{one} or \emph{two} figures is a number of \emph{one} figure, of a number expressed by \emph{three} or \emph{four} figures is a number of \emph{two} figures, and so on. If, therefore, an integral square number is divided into groups of two figures each, from the right to the left, the number of figures in the root will be equal to the number of groups of figures. The last group to the left may have only one figure. Ex. Find the square root of~$3249$. %[** TN: Tabulated calculation inset in the original] \begin{Soln} \[ \begin{array}{rc@{}ll} &3&249&(57 \\ &2&5 \\ \cline{2-3} 107\,\rlap{)}&&749 \\ &&749 \\ \cline{3-3} \end{array} \] In this case, $a$~in the typical form $a^{2} + 2ab + b^{2}$ represents $5$~tens, that is,~$50$, and $b$~represents~$7$\Add{.} The $25$ subtracted is really~$2500$, that is,~$a^{2}$, and the complete divisor $2a + b$ is $2 × 50 + 7 = 107$. \end{Soln} \Paragraph{182.} The same method will apply to numbers of more than two groups of figures by considering $a$~in the typical form to represent at each step \emph{the part of the root already found}. It must be observed that \emph{$a$~represents so many tens with respect to the next figure of the root}. Ex. Find the square root of~$94,249$. \begin{Soln} \[ \begin{array}{r*{3}{c@{\,}}l} &9& 42&49&(307 \\ &9 \\ \cline{2-4} 607\rlap{)} & & \multicolumn{2}{l}{4249} \\ & & \multicolumn{2}{l}{4249} \\ \cline{3-4} \end{array} \] \end{Soln} \begin{Remark}[Note.] Since the first trial divisor,~$60$, is not contained in~$42$, we put a zero in the root, and bring down the next group,~$49$. \end{Remark} %% -----File: 161.png---Folio 155------- \Paragraph{183.} If the square root of a number has decimal places, the number itself will have \emph{twice} as many. Thus, if $0.21$ is the square root of some number, this number will be $(0.21)^{2} = 0.21 × 0.21 = 0.0441$, and if $0.111$ be the root, the number will be $(0.111)^{2} = 0.111 x 0.111 = 0.012321$. Therefore, the number of \emph{decimal} places in every square decimal will be \emph{even}, and the number of decimal places in the root will be \emph{half} as many as in the given number itself. Hence, if a given number contain a decimal, we divide it into groups of two figures each, by beginning at the decimal point and marking toward the left for the integral number, and toward the right for the decimal. We must have the last group on the right of the decimal point contain \emph{two} figures, annexing a cipher when necessary. Ex. Find the square roots of $41.2164$ and $965.9664$. \begin{Soln} \[ \begin{array}{r@{}r@{}l@{\,}ll} & 41&.21&64& (6.42 \\ & 36 \\ \cline{2-3} 124\rlap{)} & 5&21 \\ & 4&96 \\ \cline{3-4} \multicolumn{2}{r}{1282\rlap{)}}&\multicolumn{2}{l}{2564} \\ & &\multicolumn{2}{l}{2564} \\ \cline{3-4} \end{array}\qquad\qquad\qquad \begin{array}{rl@{}l@{\,}ll} 9&65&.96& 64&(31.08 \\ 9 \\ \cline{2-2} 61\rlap{)}&65 \\ &61 \\ \cline{2-3} 6208\rlap{)}&49&664 \\ &49&664 \\ \cline{2-3} \end{array} \] \end{Soln} \Paragraph{184.} If a number contain an \emph{odd} number of decimal places, or if any number give a \emph{remainder} when as many figures in the root have been obtained as the given number has groups, then its exact square root cannot be found. We may, however, approximate to its exact root as near as we please by annexing ciphers and continuing the operation. The square root of a common fraction whose denominator is not a perfect square can be found approximately by reducing the fraction to a decimal and then extracting the root; or by reducing the fraction to an equivalent fraction whose denominator is a perfect square, and extracting the square root of both of the fraction. %% -----File: 162.png---Folio 156------- %[** Force page break in both print and screen layout] \newpage \Item{1.} Find the square roots of $3$ and $357.357$. \begin{Soln} \[ \begin{array}{rcccl} &3.&\multicolumn{3}{l}{(\rlap{$1.732\dots$}} \\ &1 \\ \cline{2-3} 27\rlap{)} &2&00 \\ &1&89 \\ \cline{3-4} \multicolumn{2}{r}{343\rlap{)}} &11&00 \\ &&10&29 \\ \cline{4-5} \multicolumn{3}{r}{3462\rlap{)}} &71&00 \\ && &69&24 \\ \cline{4-5} \end{array}\qquad\qquad\qquad \begin{array}{rcclll} &3&57.&35&70&\rlap{$(18.903\dots$} \\ &1 \\ \cline{2-3} 28\rlap{)} &2&57 \\ &2&24 \\ \cline{3-4} \multicolumn{2}{r}{369\rlap{)}} &33&35 \\ & &33&21 \\ \cline{4-6} \multicolumn{3}{r}{37803\rlap{)}} &14&70&00 \\ && &11&34&09 \\ \cline{4-6} \end{array} \] \end{Soln} \Item{2.} Find the square root of~$\frac{5}{8}$. \begin{Soln} \begin{DPalign*} \lintertext{\indent Since} \frac{5}{8} &= 0.625, \\ \lintertext{the square root of} \frac{5}{8} &= \sqrt{0.625} \\ &= 0.79057. \displaybreak[1] \\ \lintertext{\indent Or,} \frac{5}{8} &= \frac{10}{16}, \\ \lintertext{and the square root of} \frac{5}{8} &= \frac{\sqrt{10}}{\sqrt{16}} = \tfrac{1}{4}\sqrt{10} \\ &= \tfrac{1}{4}(3.16227) \\ &= 0.79057. \end{DPalign*} \end{Soln} \ScreenBreak \Exercise{79.} Find the square root of: \begin{multicols}{3} \Item{1.} $324$. \Item{2.} $441$. \Item{3.} $529$. \Item{4.} $961$. \Item{5.} $10.24$. \Item{6.} $53.29$. \Item{7.} $53,824$. \Item{8.} $616,225$. \Item{9.} $1,500,625$. \Item{10.} $346,921$. \Item{11.} $31,371,201$. \Item{12.} $1,522,756$. \end{multicols} \PrintBreak Find to four decimal places the square root of: \begin{multicols}{5} \Item{13.} $2$. \Item{14.} $3$. \Item{15.} $5$. \Item{16.} $6$. \Item{17.} $0.5$. \Item{18.} $0.9$. \Item{19.} $\frac{2}{3}$. \Item{20.} $\frac{3}{4}$. \Item{21.} $\frac{4}{5}$. \Item{22.} $\frac{5}{8}$. \end{multicols} %% -----File: 163.png---Folio 157------- \Section{Cube Roots of Compound Expressions.} \Paragraph{185.} Since the cube of $a + b$ is $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$, the cube root of a$^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ is $a + b$. It is required to devise a method for extracting the cube root $a + b$ when $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$ is given. \Item{1.} Find the cube root of $a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$. \begin{Soln} \[ \begin{array}{rl<{\quad}rcll} & & a^{3} &+& \TbBar{3a^{2}b + 3ab^{2} + b^{3}} & a + b \\ \cline{6-6} 3a^{2} & & a^{3} \\ \cline{3-3} &+ 3ab + b^{2} &\TbBar{}& & 3a^{2}b + 3ab^{2} + b^{3} \\ \cline{1-3} 3a^{2} &+ 3ab + b^{2} &\TbBar{}& & 3a^{2}b + 3ab^{2} + b^{3} \\ \cline{4-5} \end{array} \] The first term $a$ of the root is obviously the cube root of the first term~$a^{3}$ of the given expression. If $a^{3}$ be subtracted, the remainder is $3a^{2}b + 3ab^{2} + b^{3}$; therefore, the second term~$b$ of the root is obtained by dividing the first term of this remainder by \emph{three times the square of~$a$}. Also, since $3a^{2}b + 3ab^{2} + b^{3} = (3a^{2} + 3ab + b^{2})b$, the \emph{complete divisor} is obtained by adding $3ab + b^{2}$ to the \emph{trial divisor~$3a^{2}$}. \end{Soln} \Item{2.} Find the cube root of $8x^{3} + 36x^{2}y + 54xy^{2} + 27y^{3}$. \begin{Soln} \[ \begin{array}{rlrlcll} & & & 8x^{3} &+& \TbBar{36x^{2}y + 54xy^{2} + 27y^{3}} & 2x + 3y \\ \cline{7-7} & 12x^{2} & & 8x^{3} \\ \cline{4-4} (6x + 3y)3y =& & 18xy +& \TbBar{9y^{2}} & & 36x^{2}y + 54xy^{2} + 27y^{3} \\ \cline{2-4} & 12x^{2} &+ 18xy +& \TbBar{9y^{2}} & & 36x^{2}y + 54xy^{2} + 27y^{3} \\ \cline{5-6} \end{array} \] The cube root of the first term is~$2x$, and this is therefore the first term of the root. $8x^{3}$,~the cube of~$2x$, is subtracted. The second term of the root,~$3y$, is obtained by dividing $36x^{2}y$ by $3(2x)^{2} = 12x^{2}$, which corresponds to $3a^{2}$ in the typical form, and the divisor is completed by annexing to~$12x^{2}$ the expression \[ \bigl\{3(2x) + 3y\bigr\}3y = 18xy + 9y^{2}, \] which corresponds to $3ab + b^{2}$ in the typical form. \end{Soln} %% -----File: 164.png---Folio 158------- \Paragraph{186.} The same method may be applied to longer expressions by considering~$a$ in the typical form $3a^{2} + 3ab + b^{2}$ to represent at each stage of the process \emph{the part of the root already found}. Thus, if the part of the root already found is $x + y$, then $3a^{2}$~of the typical form will be represented by $3(x + y)^{2}$; and if the third term of the root be~$+z$, \DPtypo{the}{then} $3ab + b^{2}$ will be represented by $3(x + y)z + z^{2}$. So that the complete divisor, $3a^{2} + 3ab + b^{2}$, will be represented by $3(x + y)^{2} + 3(x + y)z + z^{2}$. Ex. Find the cube root of $x^{6} - 3x^{5} + 5x^{3} - 3x - 1$. \begin{Soln} %[** TN: Special spacing] \ifthenelse{\not\boolean{ForPrinting}}{\footnotesize}{} \[ \ifthenelse{\not\boolean{ForPrinting}}{\quad}{} \begin{array}{*{2}{r}@{}*{3}{r}*{4}{l}} & & & \TbBar{}& x^{2}& \multicolumn{3}{@{}l}{{} - x - 1} \\ \cline{5-6} & & & & x^{6}& {} - 3x^{5} &\multicolumn{2}{@{}l}{\phantom{{}+ 3x^{4}} + 5x^{3} - 3x - 1} \\ & 3x^{4}& & & x^{6} \\ \cline{5-5} (3x^{2} - x)(-x) =& &{} - 3x^{3}&+& \TbBar{x^{2}}&{} - 3x^{5}&\phantom{{}+ 3x^{4}} + 5x^{3} \\ \cline{3-5} & 3x^{4}&{} - 3x^{3}&+& \TbBar{x^{2}}&{} - 3x^{5}&{} + 3x^{4} - \Z x^{3} \\ \cline{6-7} & & & & &\TbBar{} &{} - 3x^{4} + 6x^{3} - 3x - 1 \\ 3(x^{2} - x)^{2} =& 3x^{4}&{} - 6x^{3}&+& 3x^{2}&\TbBar{} \\ \llap{$(3x^{2} - 3x - 1)$}(-1) =& & &-& 3x^{2}& \multicolumn{1}{l|}{{}+ 3x + 1} \\ \cline{2-6} & 3x^{4}&{} - 6x^{3}& & & \multicolumn{1}{l|}{{}+ 3x + 1}&{} - 3x^{4} + 6x^{3} - 3x - 1 \\ \cline{7-7} \end{array} \] \end{Soln} \begin{Remark}[Note.] The root is placed \emph{above} the given expression because there is no room for it on the page at the right of the expression. The first term of the root,~$x^{2}$, is obtained by taking the cube root of the first term of the given expression; and the first trial-divisor,~$3x^{4}$, is obtained by taking three times the square of this term. The next term of the root is found by dividing~$-3x^{5}$, the first term of the remainder after~$x^{6}$ is subtracted, by~$3x^{4}$, and the first complete divisor, $3x^{4} - 3x^{3} + x^{2}$, is found by annexing to the trial divisor $(3x^{2} - x)(-x)$, which expression corresponds to $(3a + b)b$ in the typical form. \emph{The part of the root already found}~($a$) is now represented by $x^{2} - x$, therefore $3a^{2}$~is represented by $3(x^{2} - x)^{2} = 3x^{4} - 6x^{3} + 3x^{2}$, the second trial divisor\Add{,} and $(3a + b)b$ by $(3x^{2} - 3x - 1)(-1)$, since $b$~in this case is found to be~$-1$, therefore, in the second complete divisor, $3a^{2} + (3a + b)b$ is represented by \[ (3x^{4} - 6x^{3} + 3x^{2}) + (3x^{2} - 3x - 1)(-1) = 3x^{4} - 6x^{3} + 3x + 1. \] \end{Remark} %% -----File: 165.png---Folio 159------- \Exercise{80.} Find the cube root of \Item{1.} $x^{3} + 3x^{2} y + 3xy^{2} + y^{3}$\Add{.} \Item{2.} $8x^{3} - 12x^{2} + 6x - 1$. \Item{3.} $8x^{3} - 36x^{2} y + 54xy^{2} - 27y^{3}$. \Item{4.} $64a^{3} - 144a^{2} x + 108ax^{2} - 27x^{3}$\Add{.} \Item{5.} $1 + 3x + 6x^{2} + 7x^{3} + 6x^{4} + 3x^{5} + x^{6}$. \Item{6.} $x^{6} - 3x^{5} + 6x^{4} - 7x^{3} + 6x^{2} - 3x + 1$. \ScreenBreak \Paragraph{187. Arithmetical Cube Roots.} In extracting the cube root of a number expressed by figures, the first step is to mark it off into groups\Add{.} Since $1 = 1^{3}$, $1000 = 10^{3}$, $1,000,000 = 100^{3}$, and so on, it follows that the cube root of any number between $1$~and $1000$, that is, of any number which has \emph{one}, \emph{two}, or \emph{three} figures, is a number of \emph{one} figure, and that the cube root of any number between $1000$ and $1,000,000$, that is, of any number which has \emph{four}, \emph{five}, or \emph{six} figures, is a number of \emph{two} figures, and so on. If, therefore, an integral cube number be divided into groups of three figures each, from right to left, the number of figures in the root will be equal to the number of groups\Add{.} The last group to the left may consist of one, two, or three figures. \Paragraph{188.} If the cube root of a number have decimal places, the number itself will have \emph{three times} as many. Thus, if $0.11$ be the cube root of a number\Add{,} the number is $0.11 × 0.11 x 0.11 = 0.001331$. Hence\Add{,} if a given number contain a decimal, we divide the figures of the number into groups of three figures each, by beginning at the decimal point and marking toward the left for the integral number, and %% -----File: 166.png---Folio 160------- toward the right for the decimal. We must be careful to have the last group on the right of the decimal point contain \emph{three} figures, annexing ciphers when necessary. \ScreenBreak Extract the cube root of~$42875$. \begin{Soln} \[ \begin{array}{rrrlll} & & & 42&875&(35 \\ & & a^{3} =& 27 \\ \cline{4-5} 3a^{2} =& 3 × 30^{2} =& \TbBar{2700} & 15&875 \\ 3ab =& 3 × (30 × 5) =& \TbBar{450} \\ b^{2} =& 5^{2} =& \TbBar{25} \\ \cline{3-3} & & \TbBar{3175} & 15&875 \\ \cline{4-5} \end{array} \] Since $42875$ has two groups, the root will have two figures. The first group, $42$, contains the cube of the tens of the root. The greatest cube in~$42$ is~$27$, and the cube root of~$27$ is~$3$. Hence $3$~is the tens' figure of the root. We subtract $27$ from~$42$, and bring down the next group,~$875$. Since $a$~is $3$~tens or~$30$, $3a^{2} = 3 × 30^{2}$, or~$2700$. This trial-divisor is contained $5$~times in~$15875$. The trial-divisor is completed by adding $3ab + b^{2}$; that is, $450 + 25$, to the trial-divisor. \end{Soln} \Paragraph{189.} The same method will apply to numbers of more than two groups of figures, by considering in each case~$a$, the part of the root already found, as so many tens with respect to the next figure of the root. \PrintStretch{12pt} Extract the cube root of~$57512456$. \begin{Soln} \[ \begin{array}{*{3}{r}*{4}{l}} & & & 57&512&456&(386 \\ & & a^{3} =& 27 \\ \cline{4-5} 3a^{2} =& 3 × 30^{2} =& \TbBar{2700} & 30&512 \\ 3ab =& 3 × (30 × 8) =& \TbBar{720} \\ b^{2} =& 8^{2} =& \TbBar{64} \\ \cline{3-3} & & \TbBar{3484} & 27&872 \\ \cline{4-6} & & \TbBar{} & \Z2&640&456 \\ 3a^{2} =& 3 × 380^{2} =& \TbBar{433200} \\ 3ab =& 3 × (380 × 6) =& \TbBar{6840} \\ b^{2} =& 6^{2} =& \TbBar{36} \\ \cline{3-3} & & \TbBar{440076} & \Z2&640&456 \\ \cline{4-6} \end{array} \] \end{Soln} %% -----File: 167.png---Folio 161------- Extract the cube root of~$187.149248$. \begin{Soln} \[ \begin{array}{*{3}{r}@{}*{4}{r}l} & & & \multicolumn{2}{r}{187\rlap{.}}&149&248&(5.72 \\ & & a^{3} =& \multicolumn{2}{r}{125} \\ \cline{4-6} 3a^{2} =& 3 × 50^{2} =& \TbBar{7500}&& 62&149 \\ 3ab =& 3 × (50 × 7) =& \TbBar{1050} \\ b^{2} =& 7^{2} =& \TbBar{49} \\ \cline{3-3} & & \TbBar{8599}&& 60&193 \\ \cline{4-7} & & & \TbBar{}& 1&956&248 \\ 3a^{2} =& 3 × 570^{2} =& 9747&\TbBar{00} \\ 3ab =& 3 × (570 × 2) =& 34&\TbBar{20} \\ b^{2} =& 2^{2} =& & \TbBar{4} \\ \cline{3-4} & & 9781&\TbBar{24}& 1&956&248 \\ \cline{5-7} \end{array} \] It will be seen from the groups of figures that the root will have one integral and two decimal places. \end{Soln} \Paragraph{190.} If the given number is not a perfect cube, ciphers may be annexed, and a value of the root may be found as near to the \emph{true} value as we please. Extract the cube root of~$1250.6894$. \begin{Soln} \[ \begin{array}{rrrcclll} & & & &1&\multicolumn{3}{l}{\rlap{250.689\,400\,(10.77}} \\ & & a^{3} &=&1 \\ \cline{4-6} 3a^{2} =& \PadTo{3 × (1070 × 7)}{3 × 10^{2}} =& \TbBar{\Z\Z300}& && 250 & \phantom{999} & \phantom{999} \\ \end{array} \] Since $300$ is not contained in~$250$, the next figure of the root will be~$0$. \[ \begin{array}{rrr@{}ccrll} 3a^{2} =& 3 × 100^{2} =& \TbBar{30000}& &\Z&250&689 \\ 3ab =& 3 × (100 × 7) =& \TbBar{2100} \\ b^{2} =& 7^{2} =& \TbBar{49} \\ \cline{3-3} & & \TbBar{32149}& && 225&043 \\ \cline{4-8} & & &\TbBar{}&& 25&646&400 \\ 3a^{2} =& 3 × 1070^{2} =& 34347&\TbBar{00} \\ 3ab =& 3 × (1070 × 7) =& 224&\TbBar{70} \\ b^{2} =& 7^{2} =& &\TbBar{49} \\ \cline{3-4} & & 34572&\TbBar{19}&& 24&200&533 \\ \cline{5-8} & & & && 1&445&867 \\ \end{array} \] \end{Soln} %% -----File: 168.png---Folio 162------- \Paragraph{191.} Notice that if $a$~denotes the first term, and $b$~the second term of the root, the \emph{first complete divisor} is \[ 3a^{2} + 3ab + b^{2}, \] and the \emph{second trial-divisor} is $3(a + b)^{2}$, that is, \[ 3a^{2} + 6ab + 3b^{2}. \] This expression may be obtained by adding to the preceding complete divisor, $3a^{2} + 3ab + b^{2}$, \emph{its second term and twice its third term}. Thus: \[ \begin{array}{rr} 3a^{2} + 3ab + & b^{2} \\ 3ab + &2b^{2} \\ \cline{1-2} 3a^{2} + 6ab + &3b^{2} \\ \end{array} \] This method of obtaining \emph{trial-divisors} is of great importance for shortening numerical work, as may be seen in the following example: Ex. Extract the cube root of~$5$ to five places of decimals. \begin{Soln} \[ \begin{array}{rrr@{}r@{}rcrrl} & & & &&5\rlap{.}&\multicolumn{3}{l}{000\,(1.70997} \\ & && \multicolumn{3}{r}{a^{3} = 1} \\ \cline{4-7} 3a^{2} =& 3 × 10^{2} =& 300&\TbBar{}&&4&000 \\ 3ab =& 3(10 × 7) =& 210&\TbBar{} \\ b^{2} =& 7^{2} =& 49&\TbBar{}\\ \cline{3-3} & & 559&\TbBar{\BB}&&3&913 \\ \cline{5-9} & & 259& & &\TbBar{}& 87& 000& 000 \\ \cline{3-5} 3a^{2} =& 3 × 1700^{2} =& 867&00&00&\TbBar{} \\ 3ab =& 3(1700 × 9) =& 4&59&00&\TbBar{} \\ b^{2} =& 9^{2} =& & &81&\TbBar{} \\ \cline{3-5} & & 871&59&81&\TbBar{\BB}& 78& 443& 829 \\ \cline{7-9} & & 4&59&81&\TbBar{}& 8& 556& 1710 \\ \cline{3-5} 3a^{2} =& 3 × 1709^{2} =& 876&20&43&\TbBar{}& 7& 885& 8387 \\ \cline{7-9} & & & & &\TbBar{}& & 670& 33230 \\ & & & & &\TbBar{}& & 613& 34301 \\ \cline{7-9} \end{array} \] %% -----File: 169.png---Folio 163------- After the first two figures of the root are found, the next trial-divisor is obtained by bringing down~$259$, the sum of the $210$ and $49$ obtained in completing the preceding divisor, then \emph{adding the three lines connected by the brace}, and annexing two ciphers to the result. This trial divisor is~$86,700$, and if we add $3ab + b^{2}$ to complete the divisor, when $b = 1$, the complete divisor will be $86,700 + 511 = 87,211$, and this is larger than the dividend~$87,000$. We therefore put $0$ for the next figure of the root. We then bring down another group and annex two more ciphers to the trial-divisor. The last two figures of the root are found by division. The rule in such cases is, that two less than the number of figures already obtained may be found without error by division, the divisor being three times the square of the part of the root already found. \end{Soln} \Paragraph{192.} The cube root of a common fraction whose denominator is not a perfect cube can be found approximately by reducing the fraction to a decimal, and then extracting the root. \Exercise{81.} Find the cube root of: \begin{multicols}{2} \Item{1.} $46,656$. \Item{2.} $42,875$. \Item{3.} $91,125$. \Item{4.} $274,625$. \Item{5.} $110,592$. \Item{6.} $258,474,853$. \Item{7.} $109,215,352$. \Item{8.} $259,694,072$. \Item{9.} $127,263,527$. \Item{10.} $385,828,352$. \Item{11.} $1879.080904$. \Item{12.} $1838.265625$. \end{multicols} Find to four decimal places the cube root of: \begin{multicols}{4} \Item{13.} $0.01$. \Item{14.} $0.05$. \Item{15.} $0.2$. \Item{16.} $4$. \Item{17.} $10$. \Item{18.} $87$. \Item{19.} $2.5$. \Item{20.} $2.05$. \Item{21.} $3.02$. \Item{22.} $\frac{2}{3}$. \Item{23.} $\frac{3}{4}$. \Item{24.} $\frac{9}{11}$. \end{multicols} %% -----File: 170.png---Folio 164------- %[Blank Page] %% -----File: 171.png---Folio 165------- \Answers \AnsTo[7]{Exercise}{1.} % Page 10. \Item{1.} $14$. \Item{2.} $10$. \Item{3.} $13$. \Item{4.} $11$. \Item{5.} $13$. \Item{6.} $7$. \Item{7.} $9$. \Item{8.} $7$. \Item{9.} $6$. \Item{10.} $2$. \Item{11.} $3$. \Item{12.} $6$. \Item{13.} $2$. \Item{14.} $8$. \Item{15.} $4$. \Item{16.} $3$. \Item{17.} $1$. \Item{18.} $1$. \Item{19.} $3$. \Item{20.} $4$. \Item{21.} $10$. \AnsTo[7]{Exercise}{2.} % Page 12. \Item{1.} $91$. \Item{2.} $21$. \Item{3.} $60$. \Item{4.} $24$. \Item{5.} $96$. \Item{6.} $16$. \Item{7.} $36$. \ResetCols[3] \Item{8.} $4a + 4b$. \Item{9.} $4a - 4b$. \Item{10.} $2a^{2} + 2b^{2}$. \Item{11.} $2a^{2} - 2b^{2}$. \Item{12.} $3ab + 3c$. \Item{13.} $3ab - 3c$. \Item{14.} $3c - 3ab$. \Item{15.} $ab + ac$. \Item{16.} $ab - ac$. \Item{17.} $3ab + 3ac$. \Item{18.} $3ab - 3ac$. \Item{19.} $5ab^{2} + 5ac$. \Item{20.} $5ab^{2} - 5ac^{2}$. \Item{21.} $5a^{2}b^{2} - 5a^{2}c$. \AnsTo[5]{Exercise}{3.} % Page 12. \Item{1.} $63$. \Item{2.} $280$. \Item{3.} $300$. \Item{4.} $98$. \Item{5.} $81$. \Item{6.} $1250$. \Item{7.} $105$. \Item{8.} $105$. \Item{9.} $315$. \Item{10.} $35$. \Item{11.} $105$. \Item{12.} $105$. \Item{13.} $0$. \Item{14.} $135$. \Item{15.} $120$. \Item{16.} $0$. \Item{17.} $1800$. \Item{18.} $540$. \Item{19.} $0$. \Item{20.} $270$. \Item{21.} $540$. \AnsTo[6]{Exercise}{4.} % Page 13. \Item{1.} $21$. \Item{2.} $26$. \Item{3.} $72$. \Item{4.} $85$. \Item{5.} $30$. \Item{6.} $17$. \Item{7.} $8$. \Item{8.} $50$. \Item{9.} $24$. \Item{10.} $0$. \Item{11.} $12$. \Item{12.} $100$. \Item{13.} $80$. \Item{14.} $71$. \Item{15.} $139$. \Item{16.} $17$. \Item{17.} $8$. \Item{18.} $5$. \Item{19.} $3$. \Item{20.} $6$. \Item{21.} $5$. \Item{22.} $1$. \Item{23.} $2$. \Item{24.} $2$. \AnsTo{Exercise}{5.} % Page 14. \Item{1.} $a$~plus~$b$; $a$~minus~$b$; $a$~times~$b$; $a$~divided by~$b$. \Item{3.} $a + b$. \Item{5.} $a - b$. \Item{7.} $x - y$. \Item{9.} $4x$; $x^{4}$. \Item{11.} $35 - x$. \Item{12.} $x - a$. \Item{14.} $14 - x$. \Item{15.} $a - x$. \Item{17.} $xy$. \Item{18.} $\dfrac{x}{y}$. %% -----File: 172.png---Folio 166------- \AnsTo[2]{Exercise}{6.} % Page 15. \Item{2.} $\dfrac{a}{b}$. \Item{4.} $(x - 3)$~yr.; $(x + 7)$~yr. \Item{6.} $7(2x - y)$. \Item{8.} $x + 1$; $x - 1$. \Item{9.} $20 - d$. \Item{11.} $x + 8$. \Item{13.} $x - 10$. \Item{14.} $10$. \AnsTo[2]{Exercise}{7.} % Page 16. \Item{1.} $(40 - x)$~yr. \Item{2.} $(a + y)$~yr. \Item{3.} $4$. \Item{5.} $ab$. \Item{6.} $5x - 3x$. \Item{8.} $2x - 3 - (x + 1)$. \Item{9.} $40$. \Item{10.} $12$. \Item{11.} $100a + 25b + 10c$. \Item{12.} $100 - x - y$. \Item{14.} $xy + c$. \AnsTo[2]{Exercise}{8.} % Page 17. \Item{2.} $xy - a^{2}$. \Item{3.} $\dfrac{ph}{gk}$. \Item{4.} $6m^{2} + 5c(d + b - a)$. \Item{5.} $5(2n + 1) - 6(c - a + b)$. \Item{6.} \$$100 - \text{\$}(a + b + 2c)$. \Item{8.} $\dfrac{1}{x}$. \Item{9.} $\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}$. \ResetCols[1] \Item{10.} $n + (n + 1) + (n + 2)$; $n(n + 1)(n + 2)$. \ResetCols[4] \Item{11.} $\dfrac{36}{x}$. \Item{12.} $qd$. \Item{13.} $qd + r$. \Item{14.} $2x$. \Item{15.} $\dfrac{10x}{12}$. \Item{16.} $\dfrac{6a}{b}$. \Item{17.} $4m$. \Item{18.} $x + 17$. \Item{19.} $x + y + c$. \Item{20.} $36x$. \Item{21.} $\dfrac{c}{4}$. \Item{22.} $x - 1$, $x$, $x + 1$. \Item{23.} $2n + 3$. \AnsTo[5]{Exercise}{9.} % Page 24. \Item{1.} $4$. \Item{2.} $5$. \Item{3.} $3$. \Item{4.} $1$. \Item{5.} $13$. \Item{6.} $0$. \Item{7.} $5$. \Item{8.} $5$. \Item{9.} $7$. \Item{10.} $4$. \Item{11.} $4$. \Item{12.} $1$. \Item{13.} $25$. \Item{14.} $32\frac{1}{2}$. \Item{15.} $6$. \Item{16.} $10$. \Item{17.} $3$. \Item{18.} $1$. \Item{19.} $7$. \Item{20.} $13$. \Item{21.} $12$. \Item{22.} $14$. \Item{23.} $7$. \Item{24.} $5$. \Item{25.} $0$. \Item{26.} $15$. \Item{27.} $10\frac{1}{2}$. \Item{28.} $4$. \Item{29.} $3$. \Item{30.} $4$. \Item{31.} $\frac{2}{5}$. \Item{32.} $6$. \Item{33.} $9$. \Item{34.} $7$. \Item{35.} $5$. \Item{36.} $6$. \Item{37.} $6$. \AnsTo[2]{Exercise}{10.} % Page 27. \Item{1.} $30$. \Item{2.} Son, $10$~yr.; father, $50$~yr. \Item{3.} $78$, $13$. \Item{4.} $80$~ft.\ broken off; $10$~ft.\ standing. \Item{5.} $23$, $30$. \Item{6.} $36$, $48$. \Item{7.} $15$, $20$. \Item{8.} $20$. \Item{9.} $12$. \Item{10.} $10$, $40$. \Item{11.} $26$, $10$. \Item{12.} $25$, $15$. \Item{13.} $10$, $20$. \Item{14.} $7$, $20$. \Item{15.} $12$, $20$. %% -----File: 173.png---Folio 167------- \AnsTo{Exercise}{11.} % Page 29. \Item{1.} Cow, \$$42$; horse, \$$168$. \Item{2.} $81$. \Item{3.} $2$. \Item{4.} $30$, $40$. \Item{5.} $25$, $26$, $27$. \Item{6.} $5$, $6$, $7$, $8$, $9$. \Item{7.} A, $30$~yr.; B, $10$~yr. \Item{8.} Father, $40$~yr., son, $10$~yr. \Item{9.} $40$. \Item{10.} $10$. \Item{11.} \$$40$. \Item{12.} $9$. \AnsTo[2]{Exercise}{12.} % Page 30. \Item{1.} $15$~men; $30$~women; $45$~children. \Item{2.} $50$. \Item{3.} $16$. \Item{4.} $7$. \Item{5.} $35$. \Item{6.} $24$. \Item{7.} $24$. \Item{8.} $20$. \Item{9.} $970$; $1074$. \AnsTo[2]{Exercise}{13.} % Page 31. \Item{1.} $24$. \Item{2.} A, \$$60$; B, \$$30$. \Item{3.} \$$3$~quarters; $6$~bills. \Item{4.} $14$. \Item{5.} \$$4$~quarters; $20$~half-dollars. \Item{6.} \$$7$~ten-dollar bills; $21$~one-dollar bills. \Item{7.} Father, $32$~yr.; son, $8$~yr. \Item{8.} $20$. \AnsTo[2]{Exercise}{14.} % Page 32. \Item{1.} $9$~miles. \Item{2.} \$$60$. \Item{3.} \$$20$~lb.\ at $65$~cts.; $60$~lb.\ at $45$~cts. \Item{4.} $40$. \Item{5.} $15,000$. \Item{6.} $15$~in.; $21$~in. \Item{7.} \$$2$~doz.\ at $25$~cts.; $5$~doz.\ at $20$~cts. \Item{8.} \$$6$~quarters, $18$~ten-cent pieces. \AnsTo[4]{Exercise}{15.} % Page 39. \Item{1.} $40c$. \Item{2.} $24a$. \Item{3.} $39x$. \Item{4.} $51y$. \Item{5.} $-26a$. \Item{6.} $-40x$. \Item{7.} $-17b$. \Item{8.} $-66z$. \Item{9.} $-20m$. \Item{10.} $2d$. \Item{11.} $0$. \Item{12.} $-18g$. \Item{13.} $a^{2}$. \Item{14.} $-21x^{3}$. \Item{15.} $0$. \Item{16.} $3mn$. \Item{17.} $0$. \Item{18.} $-3a^{3}b^{3}c^{3}$. \Item{19.} $-9abcd$. \Item{20.} $1$. \Item{21.} $12$. \Item{22.} $4$. \Item{23.} $-18$. \Item{24.} $10$. %% -----File: 174.png---Folio 168------- \AnsTo{Exercise}{16.} % Page 42. \Item{1.} $30a^{5}$. \Item{2.} $40a^{4}b^{3}$. \Item{3.} $63x^{2}y^{2}$. \Item{4.} $2a^{5}b^{5}c^{2}$. \Item{5.} $9a^{7}b^{9}c^{9}$. \Item{6.} $-10a^{2}$. \Item{7.} $12ab$. \Item{8.} $-a^{4}b^{3}$. \Item{9.} $10a^{5}b^{5}c$. \Item{10.} $12x^{7}y^{5}z^{2}$. \Item{11.} $105a^{7}b^{5}$. \Item{12.} $6a^{6}b^{5}c^{7}$. \Item{13.} $-12a^{5}b^{5}c^{5}x^{5}$. \Item{14.} $24a^{7}b^{6}c^{5}$. \Item{15.} $-42a^{6}m^{5}x^{7}$. \Item{16.} $30x^{8}y^{4}z^{6}$. \Item{17.} $-46$. \Item{18.} $-3$. \Item{19.} $-8$. \Item{20.} $-17$. \Item{21.} $9$. \Item{22.} $12$. \Item{23.} $-102$. \Item{24.} $-41$. \Item{25.} $174$. \Item{26.} $6$. \Item{27.} $30$. \Item{28.} $372$. \AnsTo[4]{Exercise}{17.} % Page 45. \Item{1.} $x^{2}$. \Item{2.} $3x^{2}$. \Item{3.} $-7$. \Item{4.} $-7$. \Item{5.} $7x^{4}$. \Item{6.} $9x$. \Item{7.} $-4a$. \Item{8.} $4x^{2}y^{2}$. \Item{9.} $-9x$. \Item{10.} $5x$. \Item{11.} $3y^{2}$. \Item{12.} $-4ab^{2}$. \Item{13.} $12xy^{4}$. \Item{14.} $\dfrac{3x^{3}y^{3}}{5}$. \Item{15.} $-\dfrac{3a}{2}$. \Item{16.} $-bd$. \Item{17.} $acd^{2}$. \Item{18.} $-\dfrac{2xy}{3}$. \Item{19.} $5ab$. \Item{20.} $4mn$. \Item{21.} $\dfrac{yz^{3}}{3}$. \Item{22.} $-17cd$. \Item{23.} $2n^{2}p$. \Item{24.} $\dfrac{3r^{2}}{p}$. \Item{25.} $-13agt$. \Item{26.} $\dfrac{1}{abc}$. \Item{27.} $\dfrac{3}{2xy^{2}z^{3}}$. \Item{28.} $\dfrac{2}{mnp}$. \Item{29.} $-\dfrac{a}{3b^{2}}$. \Item{30.} $-\dfrac{g}{3mt}$. \AnsTo[2]{Exercise}{18.} % Page 48. \Item{1.} $2a^{2} + 2b^{2}$. \Item{2.} $9a^{2} - 2a + 6$. \Item{3.} $0$. \Item{4.} $4x + 4y + 4z$. \Item{5.} $2b + 2c$. \Item{6.} $4a + 4b + 4c$. \Item{7.} $3a^{2} + 5a - 2$. \Item{8.} $8ab + 3ac$. \Item{9.} $6x^{3}$. \Item{10.} $5x^{2} + 3xy - 2y^{2}$. \Item{11.} $a^{2} - 2b^{2}$. \Item{12.} $4a^{3} + 6a + 2$. \Item{13.} $3m^{3} + 7m^{2} + 2$. \Item{14.} $2x^{3} - 2x^{2} + 4x + y$. \Item{15.} $7x^{3} + 7x^{2} + 2$. \Item{16.} $a^{3} + 3a^{2}b - 5ab^{2} - b^{3}$. \Item{17.} $-a^{3} - a^{2}b - 2ab^{2} - 2b^{3}$. \Item{18.} $2x^{3} + 2x^{2}y - xy^{2} + 6y^{3}$. %% -----File: 175.png---Folio 169------- \AnsTo[2]{Exercise}{19.} % Page 50. \Item{1.} $a - b + c$. \Item{2.} $2a - 2b + 6c$. \Item{3.} $2a + 3y -8z$. \Item{4.} $x + 4y + 5z$. \Item{5.} $2ac + 2bc$. \Item{6.} $2ab - 3ac + 4bc$. \Item{7.} $x^{3} + 3x^{2} + 2x - 8$. \Item{8.} $x^{3} - 7x^{2} + 4x$. \Item{9.} $2b^{3} + 18abc - 15c^{3}$. \Item{10.} $2 - x - 2x^{2} + 2x^{3}$. \Item{11.} $-3b^{3} - 4c^{3} + 6abc$. \Item{12.} $-x^{4} - 2x^{3} + 4x^{2} - 7x + 5$. \Item{13.} $2x + x^{2} + x^{3} + x^{5}$. \Item{14.} $2b^{3} - 4a^{2}b + 2ab^{2}$. \Item{15.} $2b^{4} - 2a^{3}b^{3} - ab^{2}$. \Item{16.} $4x^{3} - 3x^{2}y - 4xy^{2} + 7y^{3}$. \AnsTo{Exercise}{20.} % Page 52. \Item{1.} $c$. \Item{2.} $y - b$. \Item{3.} $x - 3y - 7c$. \Item{4.} $7a + 2b-2$. \Item{5.} $2a + x$. \Item{6.} $13x - 15y + 13z$. \Item{7.} $2a - 2b + 2c$. \Item{8.} $5a + b - 4c$. \Item{9.} $4x - 5y + 2z$. \Item{10.} $3a - b$. \Item{11.} $2x + 3y + z$. \Item{12.} $-8x + y$. \Item{13.} $6z - 2y-z$. \ResetCols \Item{15.} $(a + c)x - (a - b)y + (a - c)z$. \Item{16.} $(2a + 5c)x - (3a + 4b)y - (6b + 7c)z$. \Item{17.} $(ac - an)x - (bm + cn)y + (a + 3c)z$. \Item{18.} $(mn - 1)x - (mn + 1)y + (mn + 1)z$. \AnsTo[2]{Exercise}{21.} % Page 53. \Item{1.} $x^{2} + 7x$. \Item{2.} $8x^{2} - 12xy$. \Item{3.} $14xy - 21y^{2}$. \Item{4.} $2ax - 4a^{2}$. \Item{5.} $bx - 3b^{2}$. \Item{6.} $-6a^{3} + 9a^{2}b$. \Item{7.} $10x^{2}z + 15xz^{2}$. \Item{8.} $5a^{3}b - 25a^{2}b^{2}$. \Item{9.} $-x^{2}y^{2} + 3xy^{3}$. \Item{10.} $4x^{5} - 6x^{4}$. \Item{11.} $4x^{2}y - 12y^{3}$. \Item{12.} $-x^{4} + 3x^{2}y^{2}$. \Item{13.} $-a^{3}b^{3} + a^{5}b^{2}$. \Item{14.} $a^{4}b^{2} + a^{5}$. \Item{15.} $4x^{5} - 6x^{4} + 2x^{3}$. \Item{16.} $5a^{3}b - 25a^{2}b^{2} - 5ab^{3}$. \Item{17.} $a^{5} + 2a^{4}b + 2a^{3}b^{2}$. \Item{18.} $a^{3}b^{3} + 2a^{2}b^{4} + 2ab^{5}$. \Item{19.} $8x^{3} - 12x^{2}y - 18xy^{2}$. \Item{20.} $x^{2}y + 2xy^{2} - y^{3}$. \Item{21.} $a^{5} + a^{4}b^{2} + a^{2}b^{3}$. \Item{22.} $x^{2}y^{2} - 2xy^{3} + y^{4}$. \Item{23.} $15a^{4}b^{4} - 20a^{3}b^{5} + 5a^{5}b^{3}$. \Item{24.} $3a^{2}x^{2}y^{2} - 9a^{2}xy^{4} + 3a^{2}y^{6}$. \Item{25.} $x^{15}y^{2} - x^{13}y^{5} - x^{6}y^{12}$. \Item{26.} $4x^{5}y^{3} - 6x^{4}y^{5} + 4x^{3}y^{6}$. \Item{27.} $a^{10}x^{5}y^{10} - a^{9}x^{4}y^{9} - a^{8}x^{3}y^{8}$. \Item{28.} $15a^{4}b^{5} - 10a^{3}b^{6} + 25a^{5}b^{4}$. %% -----File: 176.png---Folio 170------- \AnsTo[2]{Exercise}{22.} % Page 56. \Item{1.} $x^{2} + 13x + 42$. \Item{2.} $x^{2} - x - 42$. \Item{3.} $x^{2} + x - 42$. \Item{4.} $x^{2} - 13x + 42$. \Item{5.} $x^{2} + 3x - 40$. \Item{6.} $4x^{2} + 12x + 9$. \Item{7.} $4x^{2} - 12x + 9$. \Item{8.} $4x^{2} - 9$. \Item{9.} $-9x^{2} + 12x - 4$. \Item{10.} $20x^{2} - 47x + 21$. \Item{11.} $a^{2} + ab - 6b^{2}$. \Item{12.} $a^{2} - 12ab + 35b^{2}$. \Item{13.} $25x^{2} - 30xy + 9y^{2}$. \Item{14.} $x^{2} - bx - cx + bc$. \Item{15.} $8m^{2} - 10mp + 3p^{2}$. \Item{16.} $a^{2} + ab - bc - c^{2}$. \Item{17.} $a^{4} - a^{3}b + 2a^{2}b^{2} - ab^{3} + b^{4}$. \Item{18.} $x^{5} - 3x^{4} - x^{3} + 16x^{2} - 21$. \Item{19.} $a^{3} - b^{3}$. \Item{20.} $a^{3} + b^{3}$. \Item{21.} $2x^{4} + 13x^{3} - 9x^{2} - 50x + 40$. \Item{22.} $9x^{5} - 7x^{3} + 6x^{2} - 2x$. \Item{23.} $x^{5} - 4x^{2}y^{3} + 3xy^{4}$. \Item{24.} $-a^{4} + 4a^{3}b - 7ab^{3} - 2b^{4}$. \ResetCols[1] \Item{25.} $-25a^{5}b^{3} + 20a^{4}b^{4} + 12a^{3}b^{5} - 5a^{2}b^{6} - 2ab^{7}$. \Item{26.} $a^{4} - 2a^{2}b^{2} + b^{4}$. \Item{27.} $a^{2}b^{2} + 2abcd - a^{2}c^{2} + c^{2}d^{2}$. \Item{28.} $-2x^{5}y^{3} + x^{4}y^{4} + 10x^{3}y^{5} - 8x^{2}y^{6} - 3xy^{7}$. \Item{29.} $x^{4} - 4x^{2}y^{2} + 4xy^{3} - y^{4}$. \Item{30.} $3x^{4} - 5x^{3}y - 12x^{2}y^{2} - xy^{3} + 3y^{4}$. \Item{31.} $-a^{4} + 6a^{2}b^{2} - b^{4}$. \Item{32.} $a^{4} - a^{3}c + ab^{2}c - b^{4} - 2b^{2}c^{2} + ac^{3} - c^{4}$. \Item{33.} $a^{4} - 16a^{2}b^{2}x^{2} + 32a^{3}b^{3}x^{3} - 16a^{4}b^{4}x^{4}$. \Item{34.} $6a^{4} + 5a^{3}bx - 10a^{2}b^{2}x^{2} + 7ab^{3}x^{3} - 2b^{4}x^{4}$. \Item{35.} $10x^{6}y^{2} + 14x^{5}y^{3} - 48x^{4}y^{4} + 32x^{3}y^{5} - 16x^{2}y^{6}$. \AnsTo{Exercise}{23.} % Page 58. \Item{1.} $2a^{2} - a$. \Item{2.} $7a^{4} - a$. \Item{3.} $7x^{2} + 1$. \Item{4.} $5m^{4} - p^{2}$. \Item{5.} $3x^{3} - 5x^{2}$. \Item{6.} $-3x^{3} + 1$. \Item{7.} $2x^{2} - 3x$. \Item{8.} $-x^{2} + 2$. \Item{9.} $a + 2c$. \Item{10.} $5x - y$. \Item{11.} $ax - 1$. \Item{12.} $x + xy$. \Item{13.} $-3a + 4b - 2c$. \Item{14.} $ab - b^{4} - a^{2}b$. \Item{15.} $x^{2} - 2xy - 3y^{2}$. \Item{16.} $xy - x^{2} - y^{2}$. \Item{17.} $-a^{2} + ab + b^{2}$. \Item{18.} $-a + 1 - b$. \Item{19.} $-1 + xy - x^{2}y^{2}$. \Item{20.} $x^{2} + 2x + 1$. \Item{21.} $a - b - c$. \Item{22.} $x^{3} - x^{2}y - y^{2}$. \Item{23.} $ab - 2 - 3b^{2}$. \Item{24.} $a^{2}c^{2} + a - c$. %% -----File: 177.png---Folio 171------- \AnsTo{Exercise}{24.} % Page 62. \Item{1.} $x + 8$. \Item{2.} $x - 8$. \Item{3.} $x + 8$. \Item{4.} $x - 8$. \Item{5.} $a + 5$. \Item{6.} $3a + 1$. \Item{7.} $a + 5$. \Item{8.} $-3a - 2$. \Item{9.} $x^{2} - x + 1$. \Item{10.} $x^{4} + x^{2} + 1$. \Item{11.} $1 + ab + a^{2}b^{2}$. \Item{12.} $x^{2} + 3x + 1$. \Item{13.} $a - b + c$. \Item{14.} $a + b - c$. \Item{15.} $x + y - z$. \Item{16.} $c^{2} + c + 2$. \Item{17.} $x - 2y - z$. \Item{18.} $x - a$. \Item{19.} $a - 2b + 3c$. \Item{20.} $a^{2} + 5a + 6$. \Item{21.} $q^{2} + 3q + 2$. \Item{22.} $9a^{2} + 6ab + 4b^{2}$. \Item{23.} $-65$. \Item{24.} $10$. \Item{25.} $7a - 45$. \Item{26.} $2x^{4}$. \AnsTo[1]{Exercise}{25.} % Page 63. \Item{1.} $2a^{2}$. \Item{2.} $-3a^{4} + 2a^{3}b - 2ab^{3} + 4b^{4}$. \Item{3.} $x$. \Item{4.} $a^{4} + 2a^{2}b^{2} + b^{4} - c^{4} + 2c^{2}d^{2} - d^{4}$. \Item{5.} $10y^{4} + 8y^{3} + 6y^{2} + 4y + 2$. \Item{6.} $0$. \Item{7.} $2z - 7y$. \Item{8.} $a^{3} - 3abc + b^{3} + c^{3}$. \Item{9.} $4y^{2} - 3xy + 2x^{2}$. \Item{10.} $5a^{3}b - b^{4}$. \Item{11.} $3x^{3} - 2x^{2} + 1$. \Item{12.} $3c^{2} + 24c - 12$. \Item{13.} $2b^{4}$. \Item{14.} $10 - 16x - 39x^{2} + 2x^{3} + 15x^{4}$. \Item{15.} $a^{4} - ax^{3} + x^{4}$. \Item{16.} $(a - b)x^{3} + (b + c)x^{2} - (c + 1)x$. \Item{17.} $(a + b)x^{4} - (a - b)x^{3} - (c + 2)x$. \Item{18.} $(a + 1)x^{3} - (b + c)x^{2} + (b - c)x$. \AnsTo[2]{Exercise}{26.} % Page 65. \Item{1.} $m^{2} + 2mn + n^{2}$. \Item{2.} $c^{2} - 2ac + a^{2}$. \Item{3.} $a^{2} + 4ac + 4c^{2}$ \Item{4.} $9a^{2} - 12ab + 4b^{2}$. \Item{5.} $4a^{2} + 12ab + 9b^{2}$. \Item{6.} $a^{2} - 6ab + 9b^{2}$. \Item{7.} $4x^{2} - 4xy + y^{2}$. \Item{8.} $y^{2} - 4xy + 4x^{2}$. \Item{9.} $a^{2} + 10ab + 25b^{2}$. \Item{10.} $4a2 - 20ac + 25c^{2}$. \Item{11.} $x^{2} - y^{2}$. \Item{12.} $16a^{2} - b^{2}$. \Item{13.} $4b^{2} - 9c^{2}$. \Item{14.} $x^{2} + 10bx + 25b^{2}$. \Item{15.} $y^{2} - 4yz + 4z^{2}$. \Item{16.} $y^{2} - 9z^{2}$. \Item{17.} $4a^{2} - 9b^{2}$. \Item{18.} $4a^{2} - 12ab + 9b^{2}$. \Item{19.} $4a^{2} + 12ab + 9b^{2}$. \Item{20.} $25x^{2} - 9a^{2}$. %% -----File: 178.png---Folio 172------- \AnsTo[2]{Exercise}{27.} % Page 67. \Item{1.} $x^{2} + 11x + 28$. \Item{2.} $x^{2} + 4x - 21$. \Item{3.} $x^{2} - 6x + 8$. \Item{4.} $x^{2} - 16x + 60$. \Item{5.} $x^{2} + 3x - 28$. \Item{6.} $x^{2} - ax - 2a^{2}$. \Item{7.} $x^{2} + 2ax - 3a^{2}$. \Item{8.} $a^{2} + 6ac + 9c^{2}$. \Item{9.} $a^{2} - 2ax - 8x^{2}$. \Item{10.} $a^{2} - 7ab + 12b^{2}$. \Item{11.} $a^{4} + a^{2}c - 2c^{2}$. \Item{12.} $x^{2} - 20x + 51$. \Item{13.} $x^{2} + xy - 30y^{2}$. \Item{14.} $9 + 3x - 2x^{2}$. \Item{15.} $5 - 8x - 4x^{2}$. \Item{16.} $a^{2} + ab - 6b^{2}$. \Item{17.} $a^{4}b^{4} - 6a^{2}b^{2}x^{2} + 5x^{4}$. \Item{18.} $a^{6}b^{2} + 4a^{4}b^{4} - 5a^{2}b^{6}$. \Item{19.} $x^{4}y^{2} - 4x^{3}y^{3} + 3x^{2}y^{4}$. \Item{20.} $x^{4}y^{2} + 2x^{3}y^{3} + x^{2}y^{4}$. \Item{21.} $x^{2} + (a + b)x + ab$. \Item{22.} $x^{2} + (a - b)x - ab$. \Item{23.} $x^{2} - (a - b)x - ab$. \Item{24.} $x^{2} - (a + b)x + ab$. \Item{25.} $x^{2} + (2a + 2b)x + 4ab$. \Item{26.} $x^{2} - (2a - 2b)x - 4ab$. \Item{27.} $x^{2} + (2a - 2b)x - 4ab$. \Item{28.} $x^{2} - (2a + 2b)x + 4ab$. \Item{29.} $x^{2} + 2ax - 3a^{2}$. \Item{30.} $x^{2} + ax - 6a^{2}$. \AnsTo{Exercise}{28.} % Page 68. \Item{1.} $x + 2$. \Item{2.} $x - 2$. \Item{3.} $a + 3$. \Item{4.} $a - 3$. \Item{5.} $c + 5$. \Item{6.} $c - 5$. \Item{7.} $7x + y$. \Item{8.} $7x - y$. \Item{9.} $3b + 1$. \Item{10.} $3b - 1$. \Item{11.} $4x^{2} + 5a$. \Item{12.} $4x^{2} - 5a$. \Item{13.} $3x + 5y$. \Item{14.} $a + b - c$. \Item{15.} $a - b + c$. \Item{16.} $a + 2b - c$. \Item{17.} $5a - 7b + 1$. \Item{18.} $5a - 7b - 1$. \Item{19.} $z + x - y$. \Item{20.} $z - x + y$. \Item{21.} $a - 2b + c$. \Item{22.} $x + 3y + z$. \Item{23.} $x + 3y - z$. \Item{24.} $a + 2b + 2c$. \Item{25.} $a + 2b - 2c$. \Item{26.} $1 - 3x + 2y$. \AnsTo[2]{Exercise}{29.} % Page 69. \Item{1.} $1 + x + x^{2}$. \Item{2.} $1 + 2a + 4a^{2}$. \Item{3.} $1 + 3c + 9c^{2}$. \Item{4.} $4a^{2} + 2ab + b^{2}$. \Item{5.} $16b^{2} + 12bc + 9c^{2}$. \Item{6.} $9x^{2} + 6xy + 4y^{2}$. \Item{7.} $x^{2}y^{2} + xyz + z^{2}$. \Item{8.} $a^{2}b^{2} + 2ab + 4$. \Item{9.} $25a^{2} + 5ab + b^{2}$. \Item{10.} $a^{2} + 2ab + 4b^{2}$. \Item{11.} $a^{2} + 4a + 16$. \Item{12.} $a^{6} + 3a^{3} + 9$. \Item{13.} $a^{8} + a^{4}x^{2}y^{2} + x^{4}y^{4}$. \Item{14.} $x^{10} + x^{5}a^{3}b^{3} + a^{6}b^{6}$. \Item{15.} $9x^{2}y^{2} + 3xyz^{4} + z^{8}$. \Item{16.} $x^{2}y^{2}z^{2} + xyz + 1$. \Item{17.} $4a^{2}b^{2}c^{2} - 6abc + 9$. \Item{18.} $1 + 4xyz + 16x^{2}y^{2}z^{2}$. %% -----File: 179.png---Folio 173------- \AnsTo[2]{Exercise}{30.} % Page 70. \Item{1.} $1 - x + x^{2}$. \Item{2.} $1 - 2a + 4a^{2}$. \Item{3.} $1 - 3c + 9c^{2}$. \Item{4.} $4a^{2} - 2ab + b^{2}$. \Item{5.} $16b^{2} - 12bc + 9c^{2}$. \Item{6.} $9x^{2} - 6xy + 4y^{2}$. \Item{7.} $4x^{2} - 10xy + 25y^{2}$. \Item{8.} $x^{2}y^{2} - xyz + z^{2}$. \Item{9.} $a^{2}b^{2} - 2ab + 4$. \Item{10.} $25a^{2} - 5ab + b^{2}$. \Item{11.} $a^{2} - 2ab + 4b^{2}$. \Item{12.} $a^{4} - 4a^{2} + 16$. \Item{13.} $a^{6} - 3a^{3} + 9$. \Item{14.} $4a^{4} - 2a^{2}b + b^{2}$. \Item{15.} $a^{8} - a^{4}x^{2}y^{2} + x^{4}y^{4}$. \Item{16.} $x^{10} - x^{5}a^{3}b^{3} + a^{6}b^{6}$. \Item{17.} $9x^{2}y^{2} - 3xyz^{4} + z^{8}$. \Item{18.} $x^{2}y^{2}z^{2} - xyz + 1$. \Item{19.} $4a^{2}b^{2}c^{2} - 6abc + 9$. \Item{20.} $1 - 4xyz + 16x^{2}y^{2}z^{2}$. \Item{21.} $1 - 3a^{2}bc + 9a^{4}b^{2}c^{2}$. \Item{22.} $x^{3} + x^{2}y + xy^{2} + y^{3}$. \Item{23.} $x^{3} - x^{2}y + xy^{2} - y^{3}$. \Item{24.} $x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4}$. \Item{25.} $x^{4} - x^{3}y + x^{2}y^{2} - xy^{3} + y^{4}$. \Item{26.} $x^{5} + x^{4}y + x^{3}y^{2} + x^{2}y^{3} + xy^{4} + y^{5}$. \Item{27.} $x^{5} - x^{4}y + x^{3}y^{2} - x^{2}y^{3} + xy^{4} - y^{5}$. \AnsTo[2]{Exercise}{31.} % Page 72. \Item{1.} $2x(x - 2)$. \Item{2.} $3a(a^{2} - 2)$. \Item{3.} $5a^{2}b^{2}(1 - 2ab)$. \Item{4.} $xy(3x + 4y)$. \Item{5.} $4a^{2}b^{2}(2a + b)$. \Item{6.} $3a^{2}(a^{2} - 4 - 2a)$. \Item{7.} $4x^{2}(1 - 2x^{2} - 3x^{3})$. \Item{8.} $5(1 - 2x^{2}y^{2} + 3x^{2}y)$. \Item{9.} $7a(a + 2 - 3a^{2})$. \Item{10.} $3x^{2}y^{2}(xy - 2x^{2}y^{2} - 3)$. \AnsTo{Exercise}{32.} % Page 73. \Item{1.} $(x^{2} + 1)(x + 1)$. \Item{2.} $(x^{2} + 1)(x - 1)$. \Item{3.} $(x + y)(x + z)$. \Item{4.} $(x - y)(a - b)$. \Item{5.} $(a + b)(a - c)$. \Item{6.} $(x + 3)(x - b)$. \Item{7.} $(x^{2} + 2)(2x - 1)$. \Item{8.} $(a - b)(a - 3)$. \Item{9.} $(2a - c)(3a + b)$. \Item{10.} $(xy + c)(ab + c)$. \Item{11.} $(a - b - c)(x - y)$. \Item{12.} $(a - b - 2c)(a - b)$. \AnsTo[2]{Exercise}{33.} % Page 74. \Item{1.} $(2 + x)(2 - x)$. \Item{2.} $(3 + x)(3 - x)$. \Item{3.} $(3a + x)(3a - x)$. \Item{4.} $(5 + x)(5 - x)$. \Item{5.} $(5x + a)(5x - a)$. \Item{6.} $(4a^{2} + 11)(4a^{2} - 11)$. \Item{7.} $(11a^{2} + 4)(11a^{2} - 4)$. \Item{8.} $(2ab + cd)(2ab - cd)$. \Item{9.} $(1 + xy)(1 - xy)$. \Item{10.} $(9xy + 1)(9xy - 1)$. \Item{11.} $(7ab + 2)(7ab - 2)$. \Item{12.} $(5a^{2}b^{2} + 3)(5a^{2}b^{2} - 3)$. \Item{13.} $(3a^{4}b^{3} + 4x^{5})(3a^{4}b^{3} - 4x^{5})$. \Item{14.} $(12xy + 1)(12xy - 1)$. \Item{15.} $(10x^{3}yz^{2} + 1)(10x^{3}yz^{2} - 1)$. \Item{16.} $(1 + 11a^{2}b^{4}c^{6})(1 - 11a^{2}b^{4}c^{6})$. \Item{17.} $(5a + 8x^{3}y^{3})(5a - 8x^{3}y^{3})$. \Item{18.} $(4x^{8} + 5y^{9})(4x^{8} - 5y^{9})$. \Item{19.} $90,000$. \Item{20.} $22,760$. \Item{21.} $732,200$. \Item{22.} $400$. \Item{23.} $28,972$. \Item{24.} $14,248,000$. %% -----File: 180.png---Folio 174------- \AnsTo[2]{Exercise}{34.} % Page 75. \Item{1.} $(x + y + z)(x + y - z)$. \Item{2.} $(x - y + z)(x - y - z)$. \Item{3.} $(z + x + y)(z - x - y)$. \Item{4.} $(z + x - y)(z - x + y)$. \Item{5.} $(x + y + 2z)(x + y - 2z)$. \Item{6.} $(2z + x - y)(2z - x + y)$. \Item{7.} $(a + 2b + c)(a + 2b - c)$. \Item{8.} $(a - 2b + c)(a - 2b - c)$. \Item{9.} $(c + a - 2b)(c - a + 2b)$. \Item{10.} $(2a + 5c + 1)(2a + 5c - 1)$. \Item{11.} $(1 + 2a - 5c)(1 - 2a + 5c)$. \Item{12.} $(a + 3b + 4c)(a + 3b - 4c)$. \Item{13.} $(a - 5b + 3c)(a - 5b - 3c)$. \Item{14.} $(4c + a - 5b)(4c - a + 5b)$. \Item{15.} $(2a + x + y)(2a - x - y)$. \Item{16.} $(b + a - 2x)(b - a + 2x)$. \Item{17.} $(2z + x + 3y)(2z - x - 3y)$. \Item{18.} $(3 + 3a - 7b)(3 - 3a + 7b)$. \Item{19.} $(4a + 2b + 5c)(4a - 2b - 5c)$. \Item{20.} $(5c + 3a - 2x)(4c - 3a + 2x)$. \Item{21.} $(3a + 3b -5c)(3a - 3b + 5c)$. \Item{22.} $(4y + a - 3c)(4y - a + 3c)$. \Item{23.} $(7m + p + 2q)(7m - p - 2q)$. \Item{24.} $(6n + d - 2c)(6n - d + 2c)$. \Item{25.} $(x + y + a + b)(x + y - a - b)$. \Item{26.} $(x - y + a - b)(x - y - a + b)$. \Item{27.} $(2x + 3 + 2a + b)(2x + 3 - 2a - b)$. \Item{28.} $(b - c + a - 2x)(b - c - a + 2x)$. \Item{29.} $(3x - y + 2a - b)(3x - y - 2a + b)$. \Item{30.} $(x - 3y + a + 2b)(x - 3y - a - 2b)$. \Item{31.} $(x + 2y + a + 3b)(x + 2y - a - 3b)$. \Item{32.} $(x + y + a - z)(x + y - a + z)$. \AnsTo[2]{Exercise}{35.} % Page 77. \Item{1.} $(2x - y)(4x^{2} + 2xy + y^{2})$. \Item{2.} $(x - 1)(x^{2} + x + 1)$. \Item{3.} $(xy - z)(x^{2}y^{2} + xyz + z^{2})$. \Item{4.} $(x - 4)(x^{2} + 4x + 16)$. \Item{5.} $(5a - b)(25a^{2} + 5ab + b^{2})$. \Item{6.} $(a - 7)(a^{2} + 7a + 49)$. \Item{7.} $(ab - 3c)(a^{2}b^{2} + 3abc + 9c^{2})$. \Item{8.} $(xyz - 2)(x^{2}y^{2}z^{2} + 2xyz + 4)$. \Item{9.} $(2ab - 3y^{2})(4a^{2}b^{2} + 6aby^{2} + 9y^{4})$. \Item{10.} $(4x - y^{3})(16x^{2} + 4xy^{3} + y^{6})$. \Item{11.} $(3a - 4c^{2})(9a^{2} + 12ac^{2} + 16c^{4})$. \Item{12.} $(xy - 6z)(x^{2}y^{2} + 6xyz + 36z^{2})$. \Item{13.} $(4x - 9y)(16x^{2} + 36xy + 81y^{2})$. \Item{14.} $(3a - 8c)(9a^{2} + 24ac + 64c^{2})$. \Item{15.} $(2x^{2} - 5y)(4x^{4} + 10x^{2}y + 25y^{2})$. \Item{16.} $(4x^{2} - 3y^{5})(16x^{8} + 12x^{4}y^{5} + 9y^{10})$. \Item{17.} $(6 - 2a)(36 + 12a + 4a^{2})$. \Item{18.} $(7 - 3y)(49 + 21y + 9y^{2})$. %% -----File: 181.png---Folio 175------- \AnsTo[2]{Exercise}{36.} % Page 78. \Item{1.} $(x + 1)(a^{2} - x + 1)$. \Item{2.} $(2x + y)(4x^{2} - 2xy + y^{2})$. \Item{3.} $(x + 5)(x^{2} - 5x + 25)$. \Item{4.} $(4a + 3)(16a^{2} - 12a + 9)$. \Item{5.} $(xy + z)(x^{2}y^{2} - xyz + z^{2})$. \Item{6.} $(a + 4)(a^{2} - 4a + 16)$. \Item{7.} $(2a^{2} + b)(4a^{4} - 2a^{2}b + b^{2})$. \Item{8.} $(x + 7)(x^{2} - 7x + 49)$. \Item{9.} $(2 + xyz)(4 - 2xyz + x^{2}y^{2}z^{2})$. \Item{10.} $(y^{3} + 4x)(y^{6} - 4y^{3}x + 16x^{2})$. \Item{11.} $(ab + 3x)(a^{2}b^{2} - 3abx + 9x^{2})$. \Item{12.} $(2yz + x^{2})(4y^{2}z^{2} - 2yzx^{2} + x^{4})$. \Item{13.} $(y^{3} + 4x^{2})(y^{6} - 4y^{3}x^{2} + 16x^{4})$. \Item{14.} $(4a^{4} + x^{5})(16a^{8} - 4a^{4}x^{5} + x^{10})$. \Item{15.} $(3x^{5} + 2a^{2})(9x^{10} - 6x^{5}a^{2} + 4a^{4})$. \Item{16.} $(3x^{3} + 8)(9x^{6} - 24x^{3} + 64)$. \Item{17.} $(7 + 4x)(49 - 28x + 16x^{2})$. \Item{18.} $(5 + 3y)(25 - 15y + 9y^{2})$. \AnsTo{Exercise}{37.} % Page 80. \Item{1.} $(2x + y)(2x + y)$. \Item{2.} $(x + 3y)(x + 3y)$. \Item{3.} $(x + 8)(x + 8)$. \Item{4.} $(x + 5a)(x + 5a)$. \Item{5.} $(a - 8)(a - 8)$. \Item{6.} $(a - 5b)(a - 5b)$. \Item{7.} $(c - 3d)(c - 3d)$. \Item{8.} $(2x - 1)(2x - 1)$. \Item{9.} $(2a - 3b)(2a - 3b)$. \Item{10.} $(3a - 4b)(3a - 4b)$. \Item{11.} $(x + 4y)(x + 4y)$. \Item{12.} $(x - 4y)(x - 4y)$. \Item{13.} $(2x - 5y)(2x - 5y)$. \Item{14.} $(1 + 10a)(1 + 10a)$. \Item{15.} $(7a - 2)(7a - 2)$. \Item{16.} $(6a + 5b)(6a + 5b)$. \Item{17.} $(9x - 2b)(9x - 2b)$. \Item{18.} $(mn + 7x^{2})(mn + 7x^{2})$. \AnsTo{Exercise}{38.} % Page 82. \Item{1.} $(a + 2)(a + 3)$. \Item{2.} $(a - 2)(a - 3)$. \Item{3.} $(a + 1)(a + 5)$. \Item{4.} $(a - 1)(a - 5)$. \Item{5.} $(a - 1)(a + 5)$. \Item{6.} $(a + 1)(a - 5)$. \Item{7.} $(c - 3)(c - 6)$. \Item{8.} $(c + 3)(c + 6)$. \Item{9.} $(c - 3)(c + 6)$. \Item{10.} $(c + 3)(c - 6)$. \Item{11.} $(x + 2)(x + 7)$. \Item{12.} $(x - 2)(x - 7)$. \Item{13.} $(x + 2)(x - 7)$. \Item{14.} $(x - 4)(x - 5)$. \Item{15.} $(x + 4)(x - 5)$. \Item{16.} $(x - 4)(x + 5)$. \Item{17.} $(x - 3)(x - 7)$. \Item{18.} $(x + 3)(x - 7)$. \Item{19.} $(x - 3)(x + 7)$. \Item{20.} $(x - 7)(x - 8)$. \Item{21.} $(x + 7)(x - 8)$. \Item{22.} $(x - 1)(x - 9)$. \Item{23.} $(x + 3)(x + 10)$. \Item{24.} $(x - 3)(x + 10)$. \Item{25.} $(x + 3)(x - 10)$. \Item{26.} $(a - 2b)(a + 3b)$. \Item{27.} $(a + 2b)(a - 3b)$. \Item{28.} $(a - b)(a + 4b)$. \Item{29.} $(a + b)(a - 4b)$. \Item{30.} $(ax + 7)(ax - 9)$. \Item{31.} $(a - 7x)(a + 9x)$. \ResetCols[2] \Item{32.} $(a - 4b)(a - 5b)$. \Item{33.} $(xy - 3z)(xy - 16z)$. \Item{34.} $(ab + 4c)(ab + 11c)$. \Item{35.} $(x - 4y)(x - 9y)$. \Item{36.} $(x + 7y)(x + 12y)$. \Item{37.} $(ax - 6y)(ax - 17y)$. \Item{38.} $(x + 2y)(x - 2y)(x^{2} - 5y^{2})$. \Item{39.} $(a^{2}x^{2} - 11y^{2})(a^{2}x^{2} - 13y^{2})$. \Item{40.} $(a^{3}b^{3} - 11c^{2})(a^{3}b^{3} - 12c^{2})$. \Item{41.} $(a + 4bc)(a - 24bc)$. \Item{42.} $(a + 8bc)(a - 12bc)$. \Item{43.} $(a + 6bc)(a - 16bc)$. \Item{44.} $(a - 3bc)(a + 32bc)$. \Item{45.} $(a + 2bc)(a - 48bc)$. \Item{46.} $(a + bc)(a + 48bc)$. \Item{47.} $(x + 9yz)(x - 27yz)$. \Item{48.} $(xy + 13z)(xy - 14z)$. %% -----File: 182.png---Folio 176------- \AnsTo[2]{Exercise}{39.} % Page 83. \Item{1.} $a(a^{2} - 7)$. \Item{2.} $ab(3ab - 2a^{2} + 3b^{2})$. \Item{3.} $(a - b + 1)(a - b)$. \Item{4.} $(a + b + 1)(a + b - 1)$. \Item{5.} $(a + 2b)(a^{2} - 2ab + 4b^{2})$. \Item{6.} $(x + 2y + 1)(x - 2y)$. \Item{7.} $(a - b)(a^{2} + ab + b^{2} + 1)$. \Item{8.} $(a - 3b)(a - 3b)$. \Item{9.} $(x + 1)(x - 2)$. \Item{10.} $(x + 1)(x - 3)$. \Item{11.} $(x - 3)(x + 7)$. \Item{12.} $(a + 2)(a - 13)$. \Item{13.} $(x^{2} + 3)(a + b)$. \Item{14.} $(x - 3)(x - y)$. \Item{15.} $(x - 3)(x - 4)$. \Item{16.} $(a + 2b)(a + 3b)$. \Item{17.} $(x^{2} + 5)(x^{2} + 5)$. \Item{18.} $(x - 9)(x - 9)$. \Item{19.} $(x - 10)(x - 11)$. \Item{20.} $(x + 8)(x + 11)$. \Item{21.} $(x - 8)(x + 11)$. \Item{22.} $(x^{2} + 1)(x - 1)$. \Item{23.} $x^{2}(3x + 1)(3x - 1)$. \Item{24.} $(1 + a - b)(1 - a + b)$. \Item{25.} $(a + b)(a^{2} - ab + b^{2} + 1)$. \Item{26.} $(m + n)(m - n)(x + y)$. \Item{27.} $(x - y + z)(x - y - z)$. \Item{28.} $(z + x - y)(z - x + y)$. \Item{29.} $(2a^{2} + 3a - 1)(2a^{2} - 3a + 1)$. \Item{30.} $(2x - y)(4x^{2} + 2xy + y^{2})$. \Item{31.} $x^{2}(x - 3y)$. \Item{32.} $(x - 3y)(x^{2} + 3xy + 9y^{2})$. \Item{33.} $(x - 5)(x + 8)$. \Item{34.} $(x - 2y)(x + 5y)$. \Item{35.} $(1 + 4x)(1 - 4x)$. \Item{36.} $a^{2}(a^{2} + 3b^{2})(a^{2} - 3b^{2})$. \Item{37.} $x(x + y)(x + 2y)$. \Item{38.} $x^{2}(x + y)(x + 3y)$. \Item{39.} $(x - 2y^{2})(x - 2y^{2})$. \Item{40.} $(4x^{2} + 1)(4x^{2} + 1)$. \Item{41.} $a^{2}(3a + 2c)(3a - 2c)$. \Item{42.} $ab(a + b)(a - 2b)$. \Item{43.} $(x + 2)(x^{2} - 2x + 4)(x - 1)$. \Item{44.} $(a + y)(a^{2} - ay + y^{2})(a - x)$. \AnsTo{Exercise}{40.} % Page 86. \Item{1.} $6$. \Item{2.} $5x^{3}$. \Item{3.} $6ax$. \Item{4.} $7ab^{2}$. \Item{5.} $7$. \Item{6.} $2a^{2}b^{2}$. \Item{7.} $x + 3y$. \Item{8.} $x + 3$. \Item{9.} $2a + 1$. \Item{10.} $x + y$. \Item{11.} $a + x$. \Item{12.} $a + 2b$. \Item{13.} $x - 1$. \Item{14.} $x + 3$. \Item{15.} $x - 6$. \Item{16.} $x^{2} - x + 1$. \Item{17.} $x - 1$. \Item{18.} $x - y$. \Item{19.} $x - 5$. \Item{20.} $a - b - c$. \Item{21.} $x + 2y$. \Item{22.} $x + 4y$. \Item{23.} $x^{2} + 2xy + 4y^{2}$. \Item{24.} $x - 2$. \Item{25.} $1 - 3a$. \Item{26.} $x - 7y$. \Item{27.} $2a + b$. \Item{28.} $x + y - z$. \AnsTo[2]{Exercise}{41.} % Page 88. \Item{1.} $18x^{2}y^{3}$. \Item{2.} $6a^{2}bc^{3}$. \Item{3.} $20a^{3}b^{3}$. \Item{4.} $30a^{3}b^{4}$. \Item{5.} $189x^{3}y^{5}$. \Item{6.} $x^{2}y^{3}z^{3}$. \Item{7.} $a^{2}(a + 1)$. \Item{8.} $x^{2}(x - 3)$. \Item{9.} $x(x + 1)(x - 1)$. \Item{10.} $x(x + 1)(x - 1)$. \Item{11.} $xy(x + y)$. \Item{12.} $x(x + 2)^{2}$. %% -----File: 183.png---Folio 177------- \Item{13.} $(a + 2)(a + 2)(a + 3)$. \Item{14.} $(c - 4)(c + 5)(c - 6)$. \Item{15.} $(b - 5)(b - 6)(b + 7)$. \Item{16.} $(y - 4)(y + 5)(y - 6)$. \Item{17.} $(z - 5)(z - 6)(z + 7)$. \Item{18.} $(x - 4)(x + 8)(x - 8)(x^{2} + 4x + 16)$. \Item{19.} $(a + b)(a + b)(a - b)(a - b)$. \Item{20.} $4a^{2}b(a + b)(a + b)(a - b)$. \Item{21.} $(y + 2)(y + 3)(y + 4)$. \Item{22.} $(x + 1)(x - 1)(x^{2} + 1)$. \Item{23.} $(1 + x)(1 - x)(1 + x + x^{2})$. \Item{24.} $(x + y)(x + y)(x - y)(x - y)$. \Item{25.} $x(x - 3)(x + 5)(x^{2} + 3x + 9)$. \Item{26.} $(a + b + c)(a + b + c)(a + b - c)$. \Item{27.} $(x - a)(x - b)(x - c)$. \Item{28.} $a(a + b + c)(a + b - c)$. \AnsTo[4]{Exercise}{42.} % Page 90. \Item{1.} $\dfrac{1}{3b}$. \Item{2.} $\dfrac{4m}{5n}$. \Item{3.} $\dfrac{3m}{4p^{2}}$. \Item{4.} $\dfrac{x^{2}}{2yz}$. \Item{5.} $\dfrac{a^{3}b^{3}}{3c^{2}}$. \Item{6.} $\dfrac{2xy}{3}$. \Item{7.} $\dfrac{2m}{3p}$. \Item{8.} $\dfrac{3b^{2}c}{4a^{3}}$. \Item{9.} $\dfrac{2y^{2}z^{4}}{3}$. \Item{10.} $\dfrac{b}{c}$. \Item{11.} $\dfrac{2a - 3b}{2a}$. \Item{12.} $\dfrac{3a}{a + 2}$. \Item{13.} $\dfrac{x}{x - 1}$. \Item{14.} $\dfrac{y}{x^{2} + 3xy + 9y^{2}}$. \Item{15.} $\dfrac{x + 1}{x - 5}$. \Item{16.} $\dfrac{x + 1}{x - 2}$. \Item{17.} $\dfrac{a + b + c}{a}$. \Item{18.} $\dfrac{x + 5}{x + 3}$. \Item{19.} $\dfrac{x + 1}{x + 3}$. \AnsTo[2]{Exercise}{43.} % Page 91. \Item{1.} $a + b + \dfrac{2}{a - b}$. \Item{2.} $a - b - \dfrac{2}{a + b}$. \Item{3.} $a - 1 + \dfrac{2a}{a^{2} - a - 1}$. \Item{4.} $2x - 4 + \dfrac{5}{x + 1}$. \Item{5.} $4x^{2} - 2x + 1 - \dfrac{1}{2x + 1}$. \Item{6.} $5x + 4 + \dfrac{x + 7}{x^{2} + x - 1}$. \Item{7.} $a + \dfrac{5a - 2}{a^{2} + a + 2}$. \Item{8.} $y^{2} - yx + x^{2}$. \Item{9.} $x^{2} - 4x + 3 + \dfrac{2x - 4}{x^{2} + x + 1}$. \Item{10.} $x^{3} + x + 1 + \dfrac{2x + 2}{x^{2} - x - 1}$. %% -----File: 184.png---Folio 178------- \AnsTo[2]{Exercise}{44.} % Page 92. \Item{1.} $\dfrac{x^{2} + y^{2}}{x - y}$. \Item{2.} $\dfrac{x^{2} + y^{2}}{x + y}$. \Item{3.} $\dfrac{2y}{x + y}$. \Item{4.} $-\dfrac{2ax}{a - x}$. \Item{5.} $-\dfrac{x + 2}{x - 3}$. \Item{6.} $-\dfrac{2x^{2} - 6x + 5}{x - 2}$. \Item{7.} $\dfrac{x^{3} + x^{2} - 2x + 1}{x + 2}$. \Item{8.} $\dfrac{2a^{2} - 11a + 6}{a - 3}$. \Item{9.} $\dfrac{-2a^{3} + a^{2} + 2a-3}{a - 1}$. \Item{10.} $\dfrac{3a^{4} + 6a^{3} - 14a^{2} - 4}{3a^{2} + 1}$. \AnsTo[1]{Exercise}{45.} % Page 94. \Item{1.} $\dfrac{x(x + a)}{(x + a)(x - a)}$, $\dfrac{x^{2}}{(x + a)(x - a)}$. \Item{2.} $\dfrac{a(a - b)}{(a + b)(a - b)}$, $\dfrac{a^{2}}{(a + b)(a - b)}$. \Item{3.} $\dfrac{1 - 2a}{(1 + 2a)(1 - 2a)}$, $\dfrac{1}{(1 + 2a)(1 - 2a)}$. \Item{4.} $\dfrac{9}{(4 + x)(4 - x)}$, $\dfrac{(4 - x)^{2}}{(4 + x)(4 - x)}$. \Item{5.} $\dfrac{a^{2}}{(3 - a)(9 + 3a + a^{2})}$, $\dfrac{a(9 + 3a + a^{2})}{(3 - a)(9 + 3a + a^{2})}$. \Item{6.} $\dfrac{x + 2}{(x + 2)(x - 2)(x - 3)}$, $\dfrac{x - 2}{(x + 2)(x - 2)(x - 3)}$. \AnsTo{Exercise}{46.} % Page 95. \Item{1.} $\dfrac{4x + 2}{5}$. \Item{2.} $\dfrac{13x + 3}{12}$. \Item{3.} $\dfrac{5(9x - 13)}{42}$. \Item{4.} $\dfrac{51x + 31}{36}$. \Item{5.} $\dfrac{x - 5}{3}$. \Item{6.} $\dfrac{5(x - y)}{8x}$. \Item{7.} $\dfrac{22x - 97}{30}$. \Item{8.} $\dfrac{3x - 4}{15x}$. \Item{9.} $\dfrac{a^{3} - b^{3} + c^{3} - abc}{abc}$. \AnsTo{Exercise}{47.} % Page 96}. \Item{1.} $\dfrac{2x + 1}{(x + 3)(x - 2)}$. \Item{2.} $\dfrac{2x}{x^{2} - 1}$. \Item{3.} $\dfrac{3x + 16}{(x - 8)(x + 2)}$. \Item{4.} $\dfrac{4ax}{a^{3} - x^{2}}$. \Item{5.} $\dfrac{ax}{x^{2} - a^{2}}$. \Item{6.} $-\dfrac{4ab}{4a^{2} - b^{2}}$. \Item{7.} $\dfrac{1}{9 - a^{2}}$. \Item{8.} $\dfrac{b}{a^{2} - b^{2}}$. \Item{9.} $\dfrac{5x + 8}{x^{2} - 4}$. \Item{10.} $\dfrac{1 + x}{1 - 9x^{2}}$. \Item{11.} $\dfrac{3(a^{2} + 4a + 1)}{a(a + 1)(a + 3)}$. \Item{12.} $\dfrac{2}{x^{2} - 1}$. \Item{13.} $\dfrac{2x^{2}}{(x + 2)(x - 3)}$. \Item{14.} $0$. %% -----File: 185.png---Folio 179------- \AnsTo{Exercise}{48.} % Page 97. \Item{1.} $0$. \Item{2.} $\dfrac{2a}{a + b}$. \Item{3.} $\dfrac{7a}{1 - a^{2}}$. \Item{4.} $\dfrac{x - 10y}{4x^{2} - 25y^{2}}$. \Item{5.} $\dfrac{2}{x + 4y}$. \Item{6.} $\dfrac{2(x + 6)}{4x^{2} - 9}$. \AnsTo{Exercise}{49.} % Page 100. \Item{1.} $\dfrac{20}{3bc}$. \Item{2.} $\dfrac{2ay}{3}$. \Item{3.} $\dfrac{7p^{2}}{4xz}$. \Item{4.} $\dfrac{2a^{2}cm}{7}$. \Item{5.} $\dfrac{30}{abc}$. \Item{6.} $abc$. \Item{7.} $b^{2}$. \Item{8.} $\dfrac{x + a}{x - 2a}$. \Item{9.} $\dfrac{xy}{2c - 1}$. \Item{10.} $\dfrac{a + 10}{a + 3}$. \Item{11.} $\dfrac{3x + 2y}{x - 2}$. \Item{12.} $\dfrac{5a + b}{4a + 3b}$. \Item{13.} $\dfrac{x - 7}{a + b + c}$. \Item{14.} $\dfrac{x(x + 1)}{x - 5}$. \Item{15.} $\dfrac{a + 1}{a + 5}$. \Item{16.} $1$. \Item{17.} $\dfrac{x(x + y)}{x + 1}$. \Item{18.} $\dfrac{b}{a - b}$. \Item{19.} $abc$. \Item{20.} $\dfrac{(x + 2y)(x + 1)}{(x + y)(x + 2)}$. \AnsTo{Exercise}{50.} % Page 102. \Item{1.} $\dfrac{x + y}{z}$. \Item{2.} $\dfrac{12x + 3y}{12x - 4y}$. \Item{3.} $\dfrac{abd - 21d^{2}}{21cd - 7ab}$. \Item{4.} $\dfrac{x^{2} + x - 2}{x^{2} - x - 2}$. \Item{5.} $1$. \Item{6.} $\dfrac{x + y}{x^{2} - 2xy + y^{2}}$. \Item{7.} $\dfrac{a + b}{a - b}$. \Item{8.} $4(3a + 8)$. \Item{9.} $\dfrac{y + x}{y - x}$. \Item{10.} $x$. \Item{11.} $\dfrac{1}{x}$. \Item{12.} $\dfrac{x^{2}(x - 3)}{x - 2}$. \Item{13.} $a - 1$. \Item{14.} $\dfrac{4a}{a - x}$. \AnsTo[5]{Exercise}{51.} % Page 105. \Item{1.} $5$. \Item{2.} $7$. \Item{3.} $2\frac{1}{2}$. \Item{4.} $120$. \Item{5.} $12$. \Item{6.} $2\frac{1}{3}$. \Item{7.} $17$. \Item{8.} $4$. \Item{9.} $4$. \Item{10.} $1$. \Item{11.} $-16$. \Item{12.} $11$. \Item{13.} $-4$. \Item{14.} $-2$. \Item{15.} $-2$. \Item{16.} $5$. \Item{17.} $9$. \Item{18.} $-1$. %% -----File: 186.png---Folio 180------- \AnsTo[5]{Exercise}{52.} % Page 106. \Item{1.} $2$. \Item{2.} $2$. \Item{3.} $-33$. \Item{4.} $1$. \Item{5.} $\frac{2}{3}$. \Item{6.} $1\frac{1}{2}$. \Item{7.} $2$. \Item{8.} $8$. \Item{9.} $5$. \Item{10.} $\frac{3}{7}$. \Item{11.} $2$. \Item{12.} $1$. \Item{13.} $3$. \AnsTo[6]{Exercise}{53.} % Page 107. \Item{1.} $33$. \Item{2.} $2$. \Item{3.} $3\frac{1}{2}$. \Item{4.} $1\frac{5}{37}$. \Item{5.} $7$. \Item{6.} $3$. \AnsTo{Exercise}{54.} % Page 108. \Item{1.} $a + b$. \Item{2.} $\dfrac{a}{2}$. \Item{3.} $\dfrac{b}{2}$. \Item{4.} $2a$. \Item{5.} $b - a$. \Item{6.} $\dfrac{ab}{a + b + c}$. \Item{7.} $\dfrac{a^{2} - b^{2}}{2a}$. \Item{8.} $\dfrac{2b}{a}$. \Item{9.} $\dfrac{2b^{2} - a^{2}}{4b - 3a}$. \Item{10.} $1$. \Item{11.} $3(a - b)$. \AnsTo[4]{Exercise}{55.} % Page 109. \Item{1.} $35$. \Item{2.} $70$. \Item{3.} $36$. \Item{4.} $57$, $58$. \AnsTo[5]{Exercise}{56.} % Page 110. \Item{1.} $81$, $19$. \Item{2.} $100$, $24$. \Item{3.} $64$, $15$. \Item{4.} $103$, $12$. \Item{5.} $295$, $25$. \AnsTo[4]{Exercise}{57.} % Page 111. \Item{1.} $12$~yr. \Item{2.} A, $60$~yr.; B, $10$~yr. \Item{3.} A, $25$~yr.; B, $5$~yr. \Item{4.} $17\frac{1}{2}$~yr. \Item{5.} $35$~yr. \Item{6.} Son, $12$~yr.; father, $36$~yr. \Item{7.} $25$~yr. \Item{8.} A, $30$~yr.; B, $15$~yr. \Item{9.} Son, $12$~yr.; father, $68$~yr. \AnsTo[6]{Exercise}{58.} % Page 112. \Item{1.} $1\frac{3}{7}$~dy. \Item{2.} $1\frac{13}{47}$~dy. \Item{3.} $1\frac{1}{20}$~dy. \Item{4.} $15$~dy. \Item{5.} $12$~hr. \Item{6.} $10$~dy. \AnsTo[5]{Exercise}{59.} % Page 113. \Item{1.} $7\frac{5}{13}$~hr. \Item{2.} $2\frac{2}{5}$~hr. \Item{3.} $\frac{10}{11}$~hr. \Item{4.} $1\frac{1}{13}$~hr. \Item{5.} $30$~hr. \AnsTo[4]{Exercise}{60.} % Page 114. \Item{1.} $36$~mi. \Item{2.} $26$~hr. \Item{3.} $8$~mi. \Item{4.} $240$~mi. \AnsTo{Exercise}{61.} % Page 115. \Item{1.} $600$. \Item{2.} $700$. \Item{3.} Dog, $1440$; rabbit, $1800$. %% -----File: 187.png---Folio 181------- \AnsTo[2]{Exercise}{62.} % Page 116. \Item{1.} $27\frac{3}{11}$~min.\ past 5~o'clock. \Item{2.} $27\frac{3}{11}$~min.\ past 2~o'clock. \Item{3.} $43\frac{7}{11}$~min.\ past 2~o'clock. \Item{4.} $21\frac{9}{11}$~min.\ past 1~o'clock. \Item{5.} $38\frac{2}{11}$~min.\ past 1~o'clock. \Item{6.} $38\frac{2}{11}$~min.\ past 7~o'clock. \AnsTo{Exercise}{63.} % Page 117. \Item{1.} $1764$~sq.~ft. \Item{2.} $18$~ft.\ by $23$~ft. \Item{3.} $14$~ft.\ by $20$~ft. \Item{4.} $12$~ft.\ by $15$~ft. \Item{5.} $30$~ft.\ by $40$~ft. \AnsTo[4]{Exercise}{64.} % Page 121. \Item{1.} $90°\,0'\,30''$; $30°\,30'$. \Item{2.} \$$133\frac{1}{3}$. \Item{3.} \$$2000$. \Item{4.} \$$4000$. \Item{5.} \$$3000$. \Item{6.} \$$500$. \Item{7.} $5$\%. \Item{8.} $6$\%. \Item{9.} $3$~yr. \Item{10.} $9\frac{3}{8}$~yr. \Item{11.} \$$25,000$. \Item{12.} \$$20,000$. \Item{13.} \$$6$\%. \Item{14.} $20$~yr. \AnsTo{Exercise}{65.} % Page 124. \Item{1.} $x = 2$, $y = 1$. \Item{2.} $x = 3$, $y = 2$. \Item{3.} $x = 5$, $y = 1$. \Item{4.} $x = 2$, $y = 1$. \Item{5.} $x = 1$, $y = 2$. \Item{6.} $x = 6$, $y = 1$. \Item{7.} $x = 3$, $y = 21$. \Item{8.} $x = 7$, $y = 7$. \Item{9.} $x = 23$, $y = -1$. \Item{10.} $x = 2$, $y = 1$. \Item{11.} $x = 35$, $y = 20$. \Item{12.} $x = 2$, $y = 1$. \Item{13.} $x = 1$, $y = 2$. \Item{14.} $x = 3$, $y = 2$. \Item{15.} $x = 1$, $y = 2$. \Item{16.} $x = 4$, $y = 3$. \Item{17.} $x = 12$, $y = 4$. \Item{18.} $x = 12$, $y = 21$. \Item{19.} $x = 5$, $y = 7$. \Item{20.} $x = 5$, $y = 2$. \Item{21.} $x = 18$, $y = 6$. \Item{22.} $x = 3$, $y = 2$. \Item{23.} $x = 3$, $y = 2$. \Item{24.} $x = 7$, $y = 8$. \Item{25.} $x = 8$, $y = -2$. \Item{26.} $x = \dfrac{a}{(a - b)}$, $y = \dfrac{b}{(a + b)}$. \AnsTo[2]{Exercise}{66.} % Page 127. \Item{1.} A, \$$520$; B, \$$440$. \Item{2.} $23$~and~$17$. \Item{3.} $20$~and~$16$. \Item{4.} Velvet, \$$6$; silk, \$$3$. \Item{5.} Wheat, \$$1$; rye, \$$\frac{4}{5}$. \Item{6.} Tea, \$$\frac{1}{2}$; coffee, \$$\frac{1}{4}$. \Item{7.} Horse, \$$92$; cow, \$$64$. %% -----File: 188.png---Folio 182------- \AnsTo[5]{Exercise}{67.} % Page 128. \Item{1.} $\frac{3}{7}$. \Item{2.} $\frac{13}{25}$. \Item{3.} $\frac{3}{20}$. \Item{4.} $\frac{5}{21}$. \Item{5.} $\frac{7}{22}$. \AnsTo[4]{Exercise}{68.} % Page 129. \Item{1.} $45$. \Item{2.} $72$. \Item{3.} $75$~and~$57$. \Item{4.} $54$. \AnsTo{Exercise}{69.} % Page 130. \Item{1.} \$$2500$ at $4$\%. \Item{2.} \$$1600$ at $6$\%. \Item{3.} \$$6000$ at $4$\%; \$$4000$ at $5$\%. \AnsTo[4]{Exercise}{70.} % Page 131. \Item{1.} $22$~and~$18$. \Item{2.} $60$~and~$8$. \Item{3.} $\frac{14}{17}$. \Item{4.} Wheat, \$$1$; barley, \$$\frac{4}{5}$. \Item{5.} A, \$$235$; B, \$$65$. \Item{6.} A, \$$70$; B, \$$30$. \Item{7.} Lemon, $2$~cts.; orange, $3$~cts. \Item{8.} A, $30$~apples; B, $10$~apples. \AnsTo[4]{Exercise}{71.} % Page 134. \Item{1.} $±2$. \Item{2.} $±3$. \Item{3.} $±5$. \Item{4.} $±8$. \Item{5.} $±7$. \Item{6.} $±5$. \Item{7.} $±5$. \Item{8.} $±3$. \Item{9.} $±3$. \Item{10.} $±3$. \Item{11.} $12$~and~$16$. \Item{12.} $12$~oranges at $3$~cts. \Item{13.} $3$~rods. \Item{14.} Width, $12$~rd.; length, $48$~rd. \AnsTo{Exercise}{72.} % Page 137. \Item{1.} $9$~or~$3$. \Item{2.} $4$~or~$2$. \Item{3.} $3$~or~$1$. \Item{4.} $1$~or~$-\frac{1}{5}$. \Item{5.} $1$~or~$-3$. \Item{6.} $\frac{4}{3}$~or~$\frac{4}{3}$. \Item{7.} $1$~or~$-\frac{1}{6}$. \Item{8.} $3$~or~$-1$. \Item{9.} $\frac{3}{4}$~or~$\frac{1}{4}$. \Item{10.} $3$~or~$\frac{1}{3}$. \Item{11.} $17$~or~$-3$. \Item{12.} $25$~or~$9$. \Item{13.} $4$~or~$-5$. \Item{14.} $4$~or~$-3$. \Item{15.} $5$~or~$1$. \Item{16.} $2$~or~$-6$. \Item{17.} $2$~or~$2$. \Item{18.} $5$~or~$-11$. \Item{19.} $2$~or~$-5\frac{1}{3}$. \Item{20.} $4\frac{1}{3}$~or~$-3\frac{2}{3}$. \Item{21.} $2$~or~$\frac{1}{3}$. \Item{22.} $4$~or~$-\frac{2}{5}$. \Item{23.} $2$~or~$-3$. \Item{24.} $10$~or~$2$. \Item{25.} $3$~or~$-2\frac{1}{3}$. \Item{26.} $2$~or~$2$. \Item{27.} $\frac{1}{2}$~or~$-3$. \Item{28.} $5$~or~$\frac{1}{2}$. \Item{29.} $7$~or~$2$. \Item{30.} $4$~or~$-\frac{2}{3}$. \Item{31.} $8$~or~$2$. \Item{32.} $4$~or~$-7$. \Item{33.} $0$~or~$3$. \Item{34.} $0$~or~$7$. \Item{35.} $5$~or~$2$. \Item{36.} $4$~or~$-1$. %% -----File: 189.png---Folio 183------- \AnsTo{Exercise}{73.} % Page 140. \Item{1.} $6$~and~$5$. \Item{2.} $5$~and~$15$. \Item{3.} Son, $8$~yr.; father, $40$~yr. \Item{4.} $9$. \Item{6.} $5$~rd.\ by $7$~rd. \Item{7.} $12$~ft. \Item{8.} $20$~ft.\ by $18$~ft. \Item{9.} $10$~rd.\ by $12$~rd. \Item{10.} Son, $10$~yr.; father, $54$~yr. \AnsTo{Exercise}{74.} % Page 141. \Item{1.} $6$~miles an hour. \Item{2.} $7$. \Item{3.} $5$. \Item{4.} $8$. \Item{5.} $36$. \AnsTo[4]{Exercise}{75.} % Page 144. \Item{1.} $75$. \Item{2.} $38$. \Item{3.} $4\frac{1}{7}$. \Item{4.} $-8\frac{3}{4}$. \Item{5.} $23$. \Item{6.} $0$. \Item{7.} $156$. \Item{8.} $20$th. \Item{9.} $101$st. \Item{10.} $26$. \Item{11.} $a$. \Item{12.} $21$, $22$,~etc. \AnsTo[4]{Exercise}{76.} % Page 146. \Item{1.} $440$. \Item{2.} $201$. \Item{3.} $4frac{1}{6}$. \Item{4.} $128$. \Item{5.} $-378$. \Item{6.} $187\frac{1}{2}$. \Item{7.} $1$, $3$, $5$. \Item{8.} $156$. \Item{9.} $300$. \Item{10.} $2550$~yd. \Item{11.} $5812.1$~ft. \Item{12.} $144.9$~ft. \Item{13.} $11$, $15$. \Item{14.} $7$, $9$, $11$. \Item{15.} $12$~miles. \Item{16.} $5$, $12$, $19$. \AnsTo[4]{Exercise}{77.} % Page 151. \Item{1.} $243$. \Item{2.} $192$. \Item{3.} $\frac{3}{64}$. \Item{4.} $256$. \Item{5.} $±4$. \Item{6.} $±4$. \Item{7.} $1092$. \Item{8.} $765$. \Item{9.} $11\frac{29}{32}$. \Item{10.} $15\frac{15}{16}$. \Item{11.} $127\frac{3}{4}$. \Item{12.} $44$. \Item{13.} $1\frac{11}{54}$. \Item{14.} \$$1.27$. \Item{15.} \$$81.90$. \Item{16.} $14,641$. \AnsTo{Exercise}{78.} % Page 153. \Item{1.} $a + b + c$. \Item{2.} $x^{2} + x + 1$. \Item{3.} $x^{2} - 2xy + y^{2}$. \Item{4.} $2a^{2} - 3ab + 5b^{2}$. \Item{5.} $4x^{3} + 3x^{2}y - 2y^{3}$. \Item{6.} $2x^{3} - xy^{2} + 3y^{3}$. \AnsTo[4]{Exercise}{79.} % Page 156. \Item{1.} $18$. \Item{2.} $21$. \Item{3.} $23$. \Item{4.} $31$. \Item{5.} $3.2$. \Item{6.} $7.3$. \Item{7.} $232$. \Item{8.} $785$. \Item{9.} $1225$. \Item{10.} $589$. \Item{11.} $5601$. \Item{12.} $1234$. \Item{13.} $1.4142\dots$ \Item{14.} $1.7320\dots$ \Item{15.} $2.2360\dots$ \Item{16.} $2.4494\dots$ \Item{17.} $0.7071\dots$ \Item{18.} $0.9486\dots$ \Item{19.} $0.8164\dots$ \Item{20.} $0.8660\dots$ \Item{21.} $0.8944\dots$ \Item{22.} $0.7905\dots$ %% -----File: 190.png---Folio 184------- \AnsTo{Exercise}{80.} % Page 159. \Item{1.} $x + y$. \Item{2.} $2x - 1$. \Item{3.} $2x - 3y$. \Item{4.} $4a - 3x$. \Item{5.} $1 + x + x^{2}$. \Item{6.} $x^{2} - x + 1$. \AnsTo[4]{Exercise}{81.} % Page 163. \Item{1.} $36$. \Item{2.} $35$. \Item{3.} $45$. \Item{4.} $65$. \Item{5.} $48$. \Item{6.} $637$. \Item{7.} $478$. \Item{8.} $638$. \Item{9.} $503$. \Item{10.} $728$. \Item{11.} $12.34$. \Item{12.} $12.25$. \Item{13.} $0.2154\dots$ \Item{14.} $0.3684\dots$ \Item{15.} $0.5848\dots$ \Item{16.} $1.5874\dots$ \Item{17.} $2.1544\dots$ \Item{18.} $4.4310\dots$ \Item{19.} $1.3572\dots$ \Item{20.} $1.2703\dots$ \Item{21.} $1.4454\dots$ \Item{22.} $0.8735\dots$ \Item{23.} $0.9085\dots$ \Item{24.} $0.9352\dots$ %[** TN: Environment opened by \AnsTo] \end{multicols} %%%%%%%%%%%%%%%%%%%%%%%%% GUTENBERG LICENSE %%%%%%%%%%%%%%%%%%%%%%%%%% \BackMatter \begin{PGtext} End of the Project Gutenberg EBook of The First Steps in Algebra, by G. A. (George Albert) Wentworth *** END OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA *** ***** This file should be named 36670-t.tex or 36670-t.zip ***** This and all associated files of various formats will be found in: http://gutenberg.sitesdebloques.org/3/6/6/7/36670/ Produced by Andrew D. Hwang, Peter Vachuska, Chuck Greif and the Online Distributed Proofreading Team at http://www.pgdp.net. Updated editions will replace the previous one--the old editions will be renamed. Creating the works from public domain print editions means that no one owns a United States copyright in these works, so the Foundation (and you!) can copy and distribute it in the United States without permission and without paying copyright royalties. Special rules, set forth in the General of Use part of this license, apply to copying and distributing Project Gutenberg-tm electronic works to protect the PROJECT GUTENBERG-tm concept and trademark. Project Gutenberg is a ed trademark, and may not be used if you charge for the eBooks, unless you receive specific permission. If you do not charge anything for copies of this eBook, complying with the rules is very easy. You may use this eBook for nearly any purpose such as creation of derivative works, reports, performances and research. They may be modified and printed and given away--you may do practically ANYTHING with public domain eBooks. Redistribution is subject to the trademark license, especially commercial redistribution. *** START: FULL LICENSE *** THE FULL PROJECT GUTENBERG LICENSE PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK To protect the Project Gutenberg-tm mission of promoting the free distribution of electronic works, by using or distributing this work (or any other work associated in any way with the phrase "Project Gutenberg"), you agree to comply with all the of the Full Project Gutenberg-tm License (available with this file or online at http://gutenberg.net/license). Section 1. General of Use and Redistributing Project Gutenberg-tm electronic works 1.A. By reading or using any part of this Project Gutenberg-tm electronic work, you indicate that you have read, understand, agree to and accept all the of this license and intellectual property (trademark/copyright) agreement. If you do not agree to abide by all the of this agreement, you must cease using and return or destroy all copies of Project Gutenberg-tm electronic works in your possession. If you paid a fee for obtaining a copy of or access to a Project Gutenberg-tm electronic work and you do not agree to be bound by the of this agreement, you may obtain a refund from the person or entity to whom you paid the fee as set forth in paragraph 1.E.8. 1.B. "Project Gutenberg" is a ed trademark. It may only be used on or associated in any way with an electronic work by people who agree to be bound by the of this agreement. There are a few things that you can do with most Project Gutenberg-tm electronic works even without complying with the full of this agreement. See paragraph 1.C below. There are a lot of things you can do with Project Gutenberg-tm electronic works if you follow the of this agreement and help preserve free future access to Project Gutenberg-tm electronic works. See paragraph 1.E below. 1.C. The Project Gutenberg Literary Archive Foundation ("the Foundation" or PGLAF), owns a compilation copyright in the collection of Project Gutenberg-tm electronic works. Nearly all the individual works in the collection are in the public domain in the United States. If an individual work is in the public domain in the United States and you are located in the United States, we do not claim a right to prevent you from copying, distributing, performing, displaying or creating derivative works based on the work as long as all references to Project Gutenberg are removed. Of course, we hope that you will the Project Gutenberg-tm mission of promoting free access to electronic works by freely sharing Project Gutenberg-tm works in compliance with the of this agreement for keeping the Project Gutenberg-tm name associated with the work. You can easily comply with the of this agreement by keeping this work in the same format with its attached full Project Gutenberg-tm License when you share it without charge with others. 1.D. The copyright laws of the place where you are located also govern what you can do with this work. Copyright laws in most countries are in a constant state of change. If you are outside the United States, check the laws of your country in addition to the of this agreement before ing, copying, displaying, performing, distributing or creating derivative works based on this work or any other Project Gutenberg-tm work. The Foundation makes no representations concerning the copyright status of any work in any country outside the United States. 1.E. Unless you have removed all references to Project Gutenberg: 1.E.1. The following sentence, with active links to, or other immediate access to, the full Project Gutenberg-tm License must appear prominently whenever any copy of a Project Gutenberg-tm work (any work on which the phrase "Project Gutenberg" appears, or with which the phrase "Project Gutenberg" is associated) is accessed, displayed, performed, viewed, copied or distributed: This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the of the Project Gutenberg License included with this eBook or online at www.gutenberg.net 1.E.2. If an individual Project Gutenberg-tm electronic work is derived from the public domain (does not contain a notice indicating that it is posted with permission of the copyright holder), the work can be copied and distributed to anyone in the United States without paying any fees or charges. If you are redistributing or providing access to a work with the phrase "Project Gutenberg" associated with or appearing on the work, you must comply either with the requirements of paragraphs 1.E.1 through 1.E.7 or obtain permission for the use of the work and the Project Gutenberg-tm trademark as set forth in paragraphs 1.E.8 or 1.E.9. 1.E.3. If an individual Project Gutenberg-tm electronic work is posted with the permission of the copyright holder, your use and distribution must comply with both paragraphs 1.E.1 through 1.E.7 and any additional imposed by the copyright holder. Additional will be linked to the Project Gutenberg-tm License for all works posted with the permission of the copyright holder found at the beginning of this work. 1.E.4. Do not unlink or detach or remove the full Project Gutenberg-tm License from this work, or any files containing a part of this work or any other work associated with Project Gutenberg-tm. 1.E.5. Do not copy, display, perform, distribute or redistribute this electronic work, or any part of this electronic work, without prominently displaying the sentence set forth in paragraph 1.E.1 with active links or immediate access to the full of the Project Gutenberg-tm License. 1.E.6. You may convert to and distribute this work in any binary, compressed, marked up, nonproprietary or proprietary form, including any word processing or hypertext form. However, if you provide access to or distribute copies of a Project Gutenberg-tm work in a format other than "Plain Vanilla ASCII" or other format used in the official version posted on the official Project Gutenberg-tm web site (www.gutenberg.net), you must, at no additional cost, fee or expense to the , provide a copy, a means of exporting a copy, or a means of obtaining a copy upon request, of the work in its original "Plain Vanilla ASCII" or other form. Any alternate format must include the full Project Gutenberg-tm License as specified in paragraph 1.E.1. 1.E.7. Do not charge a fee for access to, viewing, displaying, performing, copying or distributing any Project Gutenberg-tm works unless you comply with paragraph 1.E.8 or 1.E.9. 1.E.8. You may charge a reasonable fee for copies of or providing access to or distributing Project Gutenberg-tm electronic works provided that - You pay a royalty fee of 20% of the gross profits you derive from the use of Project Gutenberg-tm works calculated using the method you already use to calculate your applicable taxes. The fee is owed to the owner of the Project Gutenberg-tm trademark, but he has agreed to donate royalties under this paragraph to the Project Gutenberg Literary Archive Foundation. Royalty payments must be paid within 60 days following each date on which you prepare (or are legally required to prepare) your periodic tax returns. Royalty payments should be clearly marked as such and sent to the Project Gutenberg Literary Archive Foundation at the address specified in Section 4, "Information about donations to the Project Gutenberg Literary Archive Foundation." - You provide a full refund of any money paid by a who notifies you in writing (or by e-mail) within 30 days of receipt that s/he does not agree to the of the full Project Gutenberg-tm License. You must require such a to return or destroy all copies of the works possessed in a physical medium and discontinue all use of and all access to other copies of Project Gutenberg-tm works. - You provide, in accordance with paragraph 1.F.3, a full refund of any money paid for a work or a replacement copy, if a defect in the electronic work is discovered and reported to you within 90 days of receipt of the work. - You comply with all other of this agreement for free distribution of Project Gutenberg-tm works. 1.E.9. If you wish to charge a fee or distribute a Project Gutenberg-tm electronic work or group of works on different than are set forth in this agreement, you must obtain permission in writing from both the Project Gutenberg Literary Archive Foundation and Michael Hart, the owner of the Project Gutenberg-tm trademark. the Foundation as set forth in Section 3 below. 1.F. 1.F.1. Project Gutenberg volunteers and employees expend considerable effort to identify, do copyright research on, transcribe and proofread public domain works in creating the Project Gutenberg-tm collection. Despite these efforts, Project Gutenberg-tm electronic works, and the medium on which they may be stored, may contain "Defects," such as, but not limited to, incomplete, inaccurate or corrupt data, transcription errors, a copyright or other intellectual property infringement, a defective or damaged disk or other medium, a computer virus, or computer codes that damage or cannot be read by your equipment. 1.F.2. LIMITED WARRANTY, DISCLAIMER OF DAMAGES - Except for the "Right of Replacement or Refund" described in paragraph 1.F.3, the Project Gutenberg Literary Archive Foundation, the owner of the Project Gutenberg-tm trademark, and any other party distributing a Project Gutenberg-tm electronic work under this agreement, disclaim all liability to you for damages, costs and expenses, including legal fees. YOU AGREE THAT YOU HAVE NO REMEDIES FOR NEGLIGENCE, STRICT LIABILITY, BREACH OF WARRANTY OR BREACH OF CONTRACT EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU AGREE THAT THE FOUNDATION, THE TRADEMARK OWNER, AND ANY DISTRIBUTOR UNDER THIS AGREEMENT WILL NOT BE LIABLE TO YOU FOR ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU GIVE NOTICE OF THE POSSIBILITY OF SUCH DAMAGE. 1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND - If you discover a defect in this electronic work within 90 days of receiving it, you can receive a refund of the money (if any) you paid for it by sending a written explanation to the person you received the work from. If you received the work on a physical medium, you must return the medium with your written explanation. The person or entity that provided you with the defective work may elect to provide a replacement copy in lieu of a refund. If you received the work electronically, the person or entity providing it to you may choose to give you a second opportunity to receive the work electronically in lieu of a refund. If the second copy is also defective, you may demand a refund in writing without further opportunities to fix the problem. 1.F.4. Except for the limited right of replacement or refund set forth in paragraph 1.F.3, this work is provided to you 'AS-IS' WITH NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR ANY PURPOSE. 1.F.5. Some states do not allow disclaimers of certain implied warranties or the exclusion or limitation of certain types of damages. If any disclaimer or limitation set forth in this agreement violates the law of the state applicable to this agreement, the agreement shall be interpreted to make the maximum disclaimer or limitation permitted by the applicable state law. The invalidity or unenforceability of any provision of this agreement shall not void the remaining provisions. 1.F.6. INDEMNITY - You agree to indemnify and hold the Foundation, the trademark owner, any agent or employee of the Foundation, anyone providing copies of Project Gutenberg-tm electronic works in accordance with this agreement, and any volunteers associated with the production, promotion and distribution of Project Gutenberg-tm electronic works, harmless from all liability, costs and expenses, including legal fees, that arise directly or indirectly from any of the following which you do or cause to occur: (a) distribution of this or any Project Gutenberg-tm work, (b) alteration, modification, or additions or deletions to any Project Gutenberg-tm work, and (c) any Defect you cause. Section 2. Information about the Mission of Project Gutenberg-tm Project Gutenberg-tm is synonymous with the free distribution of electronic works in formats readable by the widest variety of computers including obsolete, old, middle-aged and new computers. It exists because of the efforts of hundreds of volunteers and donations from people in all walks of life. Volunteers and financial to provide volunteers with the assistance they need are critical to reaching Project Gutenberg-tm's goals and ensuring that the Project Gutenberg-tm collection will remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg-tm and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation web page at http://www.pglaf.org. Section 3. Information about the Project Gutenberg Literary Archive Foundation The Project Gutenberg Literary Archive Foundation is a non profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation's EIN or federal tax identification number is 64-6221541. Its 501(c)(3) letter is posted at http://pglaf.org/fundraising. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state's laws. The Foundation's principal office is located at 4557 Melan Dr. S. Fairbanks, AK, 99712., but its volunteers and employees are scattered throughout numerous locations. Its business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887, email business@pglaf.org. Email links and up to date information can be found at the Foundation's web site and official page at http://pglaf.org For additional information: Dr. Gregory B. Newby Chief Executive and Director gbnewby@pglaf.org Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation Project Gutenberg-tm depends upon and cannot survive without wide spread public and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine readable form accessible by the widest array of equipment including outdated equipment. Many small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS. The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit http://pglaf.org While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate. International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff. Please check the Project Gutenberg Web pages for current donation methods and addresses. Donations are accepted in a number of other ways including including checks, online payments and credit card donations. To donate, please visit: http://pglaf.org/donate Section 5. General Information About Project Gutenberg-tm electronic works. Professor Michael S. Hart is the originator of the Project Gutenberg-tm concept of a library of electronic works that could be freely shared with anyone. For thirty years, he produced and distributed Project Gutenberg-tm eBooks with only a loose network of volunteer . Project Gutenberg-tm eBooks are often created from several printed editions, all of which are confirmed as Public Domain in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition. Most people start at our Web site which has the main PG search facility: http://www.gutenberg.net This Web site includes information about Project Gutenberg-tm, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks. \end{PGtext} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % End of the Project Gutenberg EBook of The First Steps in Algebra, by % % G. A. (George Albert) Wentworth % % % % *** END OF THIS PROJECT GUTENBERG EBOOK THE FIRST STEPS IN ALGEBRA *** % % % % ***** This file should be named 36670-t.tex or 36670-t.zip ***** % % This and all associated files of various formats will be found in: % % http://gutenberg.sitesdebloques.org/3/6/6/7/36670/ % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \end{document} ### @ControlwordReplace = ( ['\\Answers', 'Answers.'], ['\\Preface', 'Preface.'], ['\\end{Remark}', ''], ['\\end{Soln}', ''], ['\\end{Theorem}', ''], ['\\HCF', 'H.C.F.'], ['\\LCD', 'L.C.D.'], ['\\LCM', 'L.C.M.'], ['\\end{multicols}', ''] ); @MathEnvironments = ( ['\\begin{DPalign*}','\\end{DPalign*}',''], ['\\begin{DPgather*}','\\end{DPgather*}',''] ); @ControlwordArguments = ( ['\\BookMark', 1, 0, '', '', 1, 0, '', ''], ['\\Chapter', 1, 1, 'Chapter ', ' ', 1, 1, '', ''], ['\\Section', 1, 1, '', ''], ['\\Exercise', 0, 0, '', '', 1, 1, 'Exercise ', ''], ['\\AnsTo', 0, 0, '', '', 1, 1, '', ' ', 1, 1, '', ''], ['\\Paragraph', 1, 1, '', ''], ['\\Signature', 1, 1, '', ' ', 1, 1, '', ''], ['\\begin{Remark}', 0, 1, '', ''], ['\\begin{Soln}', 0, 1, '', ''], ['\\begin{Theorem}', 0, 1, '', ''], ['\\Graphic', 1, 0, '', ''], ['\\Item', 0, 0, '', '', 1, 1, '', ''], ['\\Ans', 1, 1, '', ' Ans.'], ['\\First', 1, 1, '', ''], ['\\tb', 0, 0, '', ''], ['\\Defn', 1, 1, '', ''], ['\\Dictum', 1, 1, '', ''], ['\\DPtypo', 1, 0, '', '', 1, 1, '', ''], ['\\Add', 1, 1, '', ''], ['\\ResetCols', 0, 0, '', ''], ['\\begin{multicols}', 1, 0, '', ''] ); ### This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) (format=pdflatex 2010.5.6) 8 JUL 2011 19:42 entering extended mode %&-line parsing enabled. **36670-t.tex (./36670-t.tex LaTeX2e <2005/12/01> Babel and hyphenation patterns for english, usenglishmax, dumylang, noh yphenation, arabic, farsi, croatian, ukrainian, russian, bulgarian, czech, slov ak, danish, dutch, finnish, basque, french, german, ngerman, ibycus, greek, mon ogreek, ancientgreek, hungarian, italian, latin, mongolian, norsk, icelandic, i nterlingua, turkish, coptic, romanian, welsh, serbian, slovenian, estonian, esp eranto, uppersorbian, indonesian, polish, portuguese, spanish, catalan, galicia n, swedish, ukenglish, pinyin, loaded. (/usr/share/texmf-texlive/tex/latex/base/book.cls Document Class: book 2005/09/16 v1.4f Standard LaTeX document class (/usr/share/texmf-texlive/tex/latex/base/bk12.clo File: bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option) ) \c@part=\count79 \c@chapter=\count80 \c@section=\count81 \c@subsection=\count82 \c@subsubsection=\count83 \c@paragraph=\count84 \c@subparagraph=\count85 \c@figure=\count86 \c@table=\count87 \abovecaptionskip=\skip41 \belowcaptionskip=\skip42 \bibindent=\dimen102 ) (/usr/share/texmf-texlive/tex/latex/base/inputenc.sty Package: inputenc 2006/05/05 v1.1b Input encoding file \inpenc@prehook=\toks14 \inpenc@posthook=\toks15 (/usr/share/texmf-texlive/tex/latex/base/latin1.def File: latin1.def 2006/05/05 v1.1b Input encoding file )) (/usr/share/texmf-texlive/tex/latex/base/ifthen.sty Package: ifthen 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) ) (/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty Package: amsmath 2000/07/18 v2.13 AMS math features \@mathmargin=\skip43 For additional information on amsmath, use the `?' option. (/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty Package: amstext 2000/06/29 v2.01 (/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty File: amsgen.sty 1999/11/30 v2.0 \@emptytoks=\toks16 \ex@=\dimen103 )) (/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty Package: amsbsy 1999/11/29 v1.2d \pmbraise@=\dimen104 ) (/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty Package: amsopn 1999/12/14 v2.01 operator names ) \inf@bad=\count88 LaTeX Info: Redefining \frac on input line 211. \uproot@=\count89 \leftroot@=\count90 LaTeX Info: Redefining \overline on input line 307. \classnum@=\count91 \DOTSCASE@=\count92 LaTeX Info: Redefining \ldots on input line 379. LaTeX Info: Redefining \dots on input line 382. LaTeX Info: Redefining \cdots on input line 467. \Mathstrutbox@=\box26 \strutbox@=\box27 \big@size=\dimen105 LaTeX Font Info: Redeclaring font encoding OML on input line 567. LaTeX Font Info: Redeclaring font encoding OMS on input line 568. \macc@depth=\count93 \c@MaxMatrixCols=\count94 \dotsspace@=\muskip10 \c@parentequation=\count95 \dspbrk@lvl=\count96 \tag@help=\toks17 \row@=\count97 \column@=\count98 \maxfields@=\count99 \andhelp@=\toks18 \eqnshift@=\dimen106 \alignsep@=\dimen107 \tagshift@=\dimen108 \tagwidth@=\dimen109 \totwidth@=\dimen110 \lineht@=\dimen111 \@envbody=\toks19 \multlinegap=\skip44 \multlinetaggap=\skip45 \mathdisplay@stack=\toks20 LaTeX Info: Redefining \[ on input line 2666. LaTeX Info: Redefining \] on input line 2667. ) (/usr/share/texmf-texlive/tex/latex/amsfonts/amssymb.sty Package: amssymb 2002/01/22 v2.2d (/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty Package: amsfonts 2001/10/25 v2.2f \symAMSa=\mathgroup4 \symAMSb=\mathgroup5 LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold' (Font) U/euf/m/n --> U/euf/b/n on input line 132. )) (/usr/share/texmf-texlive/tex/latex/base/alltt.sty Package: alltt 1997/06/16 v2.0g defines alltt environment ) (/usr/share/texmf-texlive/tex/latex/tools/array.sty Package: array 2005/08/23 v2.4b Tabular extension package (FMi) \col@sep=\dimen112 \extrarowheight=\dimen113 \NC@list=\toks21 \extratabsurround=\skip46 \backup@length=\skip47 ) (/usr/share/texmf-texlive/tex/latex/tools/multicol.sty Package: multicol 2006/05/18 v1.6g multicolumn formatting (FMi) \c@tracingmulticols=\count100 \mult@box=\box28 \multicol@leftmargin=\dimen114 \c@unbalance=\count101 \c@collectmore=\count102 \doublecol@number=\count103 \multicoltolerance=\count104 \multicolpretolerance=\count105 \full@width=\dimen115 \page@free=\dimen116 \premulticols=\dimen117 \postmulticols=\dimen118 \multicolsep=\skip48 \multicolbaselineskip=\skip49 \partial@page=\box29 \last@line=\box30 \mult@rightbox=\box31 \mult@grightbox=\box32 \mult@gfirstbox=\box33 \mult@firstbox=\box34 \@tempa=\box35 \@tempa=\box36 \@tempa=\box37 \@tempa=\box38 \@tempa=\box39 \@tempa=\box40 \@tempa=\box41 \@tempa=\box42 \@tempa=\box43 \@tempa=\box44 \@tempa=\box45 \@tempa=\box46 \@tempa=\box47 \@tempa=\box48 \@tempa=\box49 \@tempa=\box50 \@tempa=\box51 \c@columnbadness=\count106 \c@finalcolumnbadness=\count107 \last@try=\dimen119 \multicolovershoot=\dimen120 \multicolundershoot=\dimen121 \mult@nat@firstbox=\box52 \colbreak@box=\box53 ) (/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) (/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty Package: keyval 1999/03/16 v1.13 key=value parser (DPC) \KV@toks@=\toks22 ) (/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty Package: graphics 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR) (/usr/share/texmf-texlive/tex/latex/graphics/trig.sty Package: trig 1999/03/16 v1.09 sin cos tan (DPC) ) (/etc/texmf/tex/latex/config/graphics.cfg File: graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive ) Package graphics Info: Driver file: pdftex.def on input line 90. (/usr/share/texmf-texlive/tex/latex/pdftex-def/pdftex.def File: pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX \Gread@gobject=\count108 )) \Gin@req@height=\dimen122 \Gin@req@width=\dimen123 ) (/usr/share/texmf-texlive/tex/latex/tools/indentfirst.sty Package: indentfirst 1995/11/23 v1.03 Indent first paragraph (DPC) ) (/usr/share/texmf-texlive/tex/latex/textcase/textcase.sty Package: textcase 2004/10/07 v0.07 Text only upper/lower case changing (DPC) ) (/usr/share/texmf-texlive/tex/latex/tools/calc.sty Package: calc 2005/08/06 v4.2 Infix arithmetic (KKT,FJ) \calc@Acount=\count109 \calc@Bcount=\count110 \calc@Adimen=\dimen124 \calc@Bdimen=\dimen125 \calc@Askip=\skip50 \calc@Bskip=\skip51 LaTeX Info: Redefining \setlength on input line 75. LaTeX Info: Redefining \addtolength on input line 76. \calc@Ccount=\count111 \calc@Cskip=\skip52 ) (/usr/share/texmf-texlive/tex/latex/fancyhdr/fancyhdr.sty \fancy@headwidth=\skip53 \f@ncyO@elh=\skip54 \f@ncyO@erh=\skip55 \f@ncyO@olh=\skip56 \f@ncyO@orh=\skip57 \f@ncyO@elf=\skip58 \f@ncyO@erf=\skip59 \f@ncyO@olf=\skip60 \f@ncyO@orf=\skip61 ) (/usr/share/texmf-texlive/tex/latex/geometry/geometry.sty Package: geometry 2002/07/08 v3.2 Page Geometry \Gm@cnth=\count112 \Gm@cntv=\count113 \c@Gm@tempcnt=\count114 \Gm@bindingoffset=\dimen126 \Gm@wd@mp=\dimen127 \Gm@odd@mp=\dimen128 \Gm@even@mp=\dimen129 \Gm@dimlist=\toks23 (/usr/share/texmf-texlive/tex/xelatex/xetexconfig/geometry.cfg)) (/usr/share/te xmf-texlive/tex/latex/hyperref/hyperref.sty Package: hyperref 2007/02/07 v6.75r Hypertext links for LaTeX \@linkdim=\dimen130 \Hy@linkcounter=\count115 \Hy@pagecounter=\count116 (/usr/share/texmf-texlive/tex/latex/hyperref/pd1enc.def File: pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO) ) (/etc/texmf/tex/latex/config/hyperref.cfg File: hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive ) (/usr/share/texmf-texlive/tex/latex/oberdiek/kvoptions.sty Package: kvoptions 2006/08/22 v2.4 Connects package keyval with LaTeX options ( HO) ) Package hyperref Info: Option `hyperfootnotes' set `false' on input line 2238. Package hyperref Info: Option `bookmarks' set `true' on input line 2238. Package hyperref Info: Option `linktoage' set `false' on input line 2238. Package hyperref Info: Option `pdfdisplaydoctitle' set `true' on input line 223 8. Package hyperref Info: Option `pdfpagelabels' set `true' on input line 2238. Package hyperref Info: Option `bookmarksopen' set `true' on input line 2238. Package hyperref Info: Option `colorlinks' set `true' on input line 2238. Package hyperref Info: Hyper figures OFF on input line 2288. Package hyperref Info: Link nesting OFF on input line 2293. Package hyperref Info: Hyper index ON on input line 2296. Package hyperref Info: Plain pages OFF on input line 2303. Package hyperref Info: Backreferencing OFF on input line 2308. Implicit mode ON; LaTeX internals redefined Package hyperref Info: Bookmarks ON on input line 2444. (/usr/share/texmf-texlive/tex/latex/ltxmisc/url.sty \Urlmuskip=\muskip11 Package: url 2005/06/27 ver 3.2 Verb mode for urls, etc. ) LaTeX Info: Redefining \url on input line 2599. \Fld@menulength=\count117 \Field@Width=\dimen131 \Fld@charsize=\dimen132 \Choice@toks=\toks24 \Field@toks=\toks25 Package hyperref Info: Hyper figures OFF on input line 3102. Package hyperref Info: Link nesting OFF on input line 3107. Package hyperref Info: Hyper index ON on input line 3110. Package hyperref Info: backreferencing OFF on input line 3117. Package hyperref Info: Link coloring ON on input line 3120. \Hy@abspage=\count118 \c@Item=\count119 ) *hyperref using driver hpdftex* (/usr/share/texmf-texlive/tex/latex/hyperref/hpdftex.def File: hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX \Fld@listcount=\count120 ) \TmpLen=\skip62 \DP@lign@no=\count121 \DP@lignb@dy=\toks26 (./36670-t.aux) \openout1 = `36670-t.aux'. LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 603. LaTeX Font Info: ... okay on input line 603. LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 603. LaTeX Font Info: ... okay on input line 603. LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 603. LaTeX Font Info: ... okay on input line 603. LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 603. LaTeX Font Info: ... okay on input line 603. LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 603. LaTeX Font Info: ... okay on input line 603. LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 603. LaTeX Font Info: ... okay on input line 603. LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 603. LaTeX Font Info: ... okay on input line 603. (/usr/share/texmf/tex/context/base/supp-pdf.tex [Loading MPS to PDF converter (version 2006.09.02).] \scratchcounter=\count122 \scratchdimen=\dimen133 \scratchbox=\box54 \nofMPsegments=\count123 \nofMParguments=\count124 \everyMPshowfont=\toks27 \MPscratchCnt=\count125 \MPscratchDim=\dimen134 \MPnumerator=\count126 \everyMPtoPDFconversion=\toks28 ) -------------------- Geometry parameters paper: class default landscape: -- twocolumn: -- twoside: true asymmetric: -- h-parts: 9.03374pt, 325.215pt, 9.03375pt v-parts: 4.15848pt, 495.49379pt, 6.23773pt hmarginratio: 1:1 vmarginratio: 2:3 lines: -- heightrounded: -- bindingoffset: 0.0pt truedimen: -- includehead: true includefoot: true includemp: -- driver: pdftex -------------------- Page layout dimensions and switches \paperwidth 343.28249pt \paperheight 505.89pt \textwidth 325.215pt \textheight 433.62pt \oddsidemargin -63.23625pt \evensidemargin -63.23624pt \topmargin -68.11151pt \headheight 12.0pt \headsep 19.8738pt \footskip 30.0pt \marginparwidth 98.0pt \marginparsep 7.0pt \columnsep 10.0pt \skip\footins 10.8pt plus 4.0pt minus 2.0pt \hoffset 0.0pt \voffset 0.0pt \mag 1000 \@twosidetrue \@mparswitchtrue (1in=72.27pt, 1cm=28.45pt) ----------------------- (/usr/share/texmf-texlive/tex/latex/graphics/color.sty Package: color 2005/11/14 v1.0j Standard LaTeX Color (DPC) (/etc/texmf/tex/latex/config/color.cfg File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive ) Package color Info: Driver file: pdftex.def on input line 130. ) Package hyperref Info: Link coloring ON on input line 603. (/usr/share/texmf-texlive/tex/latex/hyperref/nameref.sty Package: nameref 2006/12/27 v2.28 Cross-referencing by name of section (/usr/share/texmf-texlive/tex/latex/oberdiek/refcount.sty Package: refcount 2006/02/20 v3.0 Data extraction from references (HO) ) \c@section@level=\count127 ) LaTeX Info: Redefining \ref on input line 603. LaTeX Info: Redefining \pageref on input line 603. (./36670-t.out) (./36670-t.out) \@outlinefile=\write3 \openout3 = `36670-t.out'. LaTeX Font Info: Try loading font information for U+msa on input line 632. (/usr/share/texmf-texlive/tex/latex/amsfonts/umsa.fd File: umsa.fd 2002/01/19 v2.2g AMS font definitions ) LaTeX Font Info: Try loading font information for U+msb on input line 632. (/usr/share/texmf-texlive/tex/latex/amsfonts/umsb.fd File: umsb.fd 2002/01/19 v2.2g AMS font definitions ) [1 {/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}] [2 ] [1 ] [2] [3 ] [4] [5] (./36670-t.toc) \tf@toc=\write4 \openout4 = `36670-t.toc'. Underfull \hbox (badness 10000) in paragraph at lines 1--789 [] [6 ] [1 ] [2] [3] [4] [5] [6] [7] [8] [9] Overfull \hbox (1.72365pt too wide) in paragraph at lines 1227--1230 []\OT1/cmr/m/it/12 If an ex-pres-sion within a paren-the-sis is pre-ceded by th e sign $\OT1/cmr/m/n/12 +$\OT1/cmr/m/it/12 , [] [10] Overfull \hbox (1.91821pt too wide) in paragraph at lines 1272--1276 []\OT1/cmr/m/it/12 If an ex-pres-sion within a paren-the-sis is pre-ceded by th e sign $\OMS/cmsy/m/n/12 ^^@$\OT1/cmr/m/it/12 , [] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24 ] [25] Underfull \hbox (badness 10000) in paragraph at lines 1954--1961 [] [26] LaTeX Font Info: Try loading font information for OMS+cmr on input line 1964 . (/usr/share/texmf-texlive/tex/latex/base/omscmr.fd File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ) LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <12> not available (Font) Font shape `OMS/cmsy/m/n' tried instead on input line 1964. Underfull \hbox (badness 10000) in paragraph at lines 1966--1973 [] [27] Overfull \hbox (2.96944pt too wide) in paragraph at lines 2013--2013 [] [] [28] Underfull \hbox (badness 10000) in paragraph at lines 2054--2065 [] Overfull \hbox (10.01392pt too wide) in paragraph at lines 2065--2065 [] [] [29] Overfull \hbox (36.58296pt too wide) in paragraph at lines 2093--2093 [] [] [30] [31] Overfull \hbox (11.34335pt too wide) in paragraph at lines 2206--2206 [] [] [32] Overfull \hbox (11.61705pt too wide) in paragraph at lines 2241--2241 [] [] [33] [34] [35] [36] [37] [38] Overfull \hbox (1.94836pt too wide) in paragraph at lines 2459--2462 [][] \OT1/cmr/m/n/12 I have $$12\OML/cmm/m/it/12 :\OT1/cmr/m/n/12 75$ in two-do llar bills and twenty-five cent pieces, [] [39] [40] [41] <./images/fig1.pdf, id=408, 361.35pt x 26.0975pt> File: ./images/fig1.pdf Graphic file (type pdf) [42 <./images/fig1.pdf>] <./images/fig2.pdf, id=423, 439.6425pt x 24.09pt> File: ./images/fig2.pdf Graphic file (type pdf) [43 <./images/fig2.pdf>] [44] <./images/fig3.pdf, id=44 1, 427.5975pt x 24.09pt> File: ./images/fig3.pdf Graphic file (type pdf) [45 <./images/fig3.pdf>] [46] [47] [48] [49] [50] Overfull \hbox (1.24844pt too wide) in paragraph at lines 2867--2871 \OT1/cmr/m/it/12 mul-ti-pli-cand \OT1/cmr/m/n/12 and \OT1/cmr/m/it/12 mul-ti-pl ier\OT1/cmr/m/n/12 , a third num-ber called \OT1/cmr/m/it/12 prod-uct\OT1/cmr/m /n/12 , which [] Overfull \hbox (21.76723pt too wide) in paragraph at lines 2872--2894 []\OT1/cmr/bx/n/12 71. \OT1/cmr/m/n/12 Ac-cord-ing to this def-i-ni-tion of mul -ti-pli-ca-tion, [] [51] [52] [53] [54] [55] [56] [57] [58 ] [59] [60] [61] [62] [63] [64] [65] [66] [67 ] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82 ] [83] Overfull \hbox (42.68674pt too wide) in paragraph at lines 4261--4288 \OT1/cmr/m/n/12 should be care-fully no-ticed and re-mem-bered. [] [84] [85] [86] [87] [88] Overfull \hbox (1.2826pt too wide) in paragraph at lines 4520--4521 [][] $[]$\OT1/cmr/m/n/12 . [] [89] Overfull \hbox (1.08803pt too wide) in paragraph at lines 4576--4577 [][] $[]$\OT1/cmr/m/n/12 . [] [90] [91] [92 ] [93] [94] Overfull \hbox (2.12788pt too wide) in paragraph at lines 4767--4768 []\OT1/cmr/bx/n/12 108. When a bi-no-mial is the dif-fer-ence of two squares. [] [95] [96] [97] [98] Underfull \hbox (badness 10000) in paragraph at lines 4959--4963 [] [99] [100] [101] [102] [103] [104] Overfull \hbox (1.29138pt too wide) in paragraph at lines 5268--5270 []\OT1/cmr/m/n/10.95 Two num-bers whose prod-uct is $30$ are $1$ and $30$, $2$ and $15$, $3$ and $10$, [] [105] [106] [107] [108] [109] [110 ] [111] [112] [113] [114] [115] [116] [117 ] [118] [119] [120] [121] [122] [123] Overfull \hbox (0.88312pt too wide) in paragraph at lines 6065--6066 [][] $[]$\OT1/cmr/m/n/12 , $[]$. [] [124] Overfull \hbox (3.79523pt too wide) in paragraph at lines 6118--6118 [] [] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] Overfull \hbox (12.6967pt too wide) in paragraph at lines 6449--6449 [] [] [136 ] Overfull \hbox (13.73837pt too wide) in paragraph at lines 6508--6508 [] [] [137] [138] [139] [140] Overfull \hbox (127.43008pt too wide) in paragraph at lines 6644--6644 [] [] [141] Overfull \hbox (82.71672pt too wide) in paragraph at lines 6685--6685 [] [] [142] [143] Overfull \hbox (50.27081pt too wide) in paragraph at lines 6733--6733 [] [] Overfull \hbox (2.05074pt too wide) in paragraph at lines 6749--6749 [] [] [144] [145] Overfull \hbox (60.99086pt too wide) in paragraph at lines 6827--6827 [] [] [146] [147] Overfull \hbox (41.2357pt too wide) in paragraph at lines 6885--6885 [] [] [148] Overfull \hbox (33.08694pt too wide) in paragraph at lines 6936--6936 [] [] [149] [150] Overfull \hbox (30.04593pt too wide) in paragraph at lines 6991--6991 [] [] [151] Overfull \hbox (57.59785pt too wide) in paragraph at lines 7039--7039 [] [] [152] Overfull \hbox (24.40863pt too wide) in paragraph at lines 7052--7052 [] [] [153] Overfull \hbox (54.40073pt too wide) in paragraph at lines 7088--7088 [] [] [154] Overfull \hbox (55.29538pt too wide) in paragraph at lines 7144--7144 [] [] [155] [156] Overfull \hbox (25.74243pt too wide) in paragraph at lines 7237--7237 [] [] [157] Overfull \hbox (22.96907pt too wide) in paragraph at lines 7265--7265 [] [] [158] [159] Overfull \hbox (2.44133pt too wide) in paragraph at lines 7352--7354 [][] \OT1/cmr/m/n/12 Find the prin-ci-pal that will pro-duce $$280$ in-ter-est in $2$ years [] [160] [161] [162 ] [163] [164] [165] [166] [167] [168] [169] [170] [171] [172] Overfull \hbox (2.92752pt too wide) in paragraph at lines 7879--7882 [][] \OT1/cmr/m/n/12 A sum of money, at sim-ple in-ter-est, amounted in $10$ mo nths [] [173] [174] [175 ] Overfull \hbox (37.3597pt too wide) in paragraph at lines 7986--7986 [] [] Overfull \hbox (19.65984pt too wide) in paragraph at lines 8009--8009 [] [] [176] Overfull \hbox (28.17653pt too wide) in paragraph at lines 8026--8026 [] [] [177] [178] Overfull \hbox (101.83775pt too wide) in paragraph at lines 8136--8136 [] [] [179] Overfull \hbox (75.6592pt too wide) in paragraph at lines 8158--8158 [] [] Overfull \hbox (81.72191pt too wide) in paragraph at lines 8180--8180 [] [] [180] [181] [182] [183] Overfull \hbox (14.36713pt too wide) in paragraph at lines 8349--8349 [] [] Overfull \hbox (39.82089pt too wide) in paragraph at lines 8367--8367 [] [] [184] Overfull \hbox (48.35448pt too wide) in paragraph at lines 8374--8374 [] [] Overfull \hbox (14.62827pt too wide) in paragraph at lines 8395--8395 [] [] [185] [186] Overfull \hbox (36.34747pt too wide) in paragraph at lines 8465--8465 [] [] [187] [188] [189 ] [190] Overfull \hbox (41.95776pt too wide) in paragraph at lines 8610--8610 [] [] [191] [192] [193] [194] [195] [196] [197 ] Overfull \hbox (5.98813pt too wide) in paragraph at lines 8846--8859 []\OT1/cmr/m/n/10.95 The 5th and 7th are $\OML/cmm/m/it/10.95 ar[]$ \OT1/ cmr/m/n/10.95 and $\OML/cmm/m/it/10.95 ar[]$\OT1/cmr/m/n/10.95 , re-spec-tively . [] [198] Overfull \hbox (1.00482pt too wide) in paragraph at lines 8878--8880 []\OT1/cmr/m/n/12 Hence\OT1/cmr/m/it/12 , the ge-o-met-ri-cal mean of any two n um-bers is the square [] Overfull \hbox (84.25482pt too wide) in paragraph at lines 8894--8894 [] [] [199] Overfull \hbox (35.57372pt too wide) in paragraph at lines 8921--8921 [] [] Overfull \hbox (36.34883pt too wide) in paragraph at lines 8935--8935 [] [] [200] Overfull \hbox (2.11494pt too wide) in paragraph at lines 8950--8952 [][] \OT1/cmr/m/n/12 Find the com-mon ra-tio if the 1st and 3d are $2$ an d $32$. [] [201] [202] [203 ] [204] [205] [206] [207] [208] [209] [210] [211] [212] [213] [214] [215] [216] [217] [218] [219] [220] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9785--9786 [][]$\OT1/cmr/m/n/10 14$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9787--9788 [][]$\OT1/cmr/m/n/10 10$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9789--9790 [][]$\OT1/cmr/m/n/10 13$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9791--9792 [][]$\OT1/cmr/m/n/10 11$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9793--9794 [][]$\OT1/cmr/m/n/10 13$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9825--9826 [][]$\OT1/cmr/m/n/10 10$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9830--9831 [][]$\OT1/cmr/m/n/10 91$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9832--9833 [][]$\OT1/cmr/m/n/10 21$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9834--9835 [][]$\OT1/cmr/m/n/10 60$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9836--9837 [][]$\OT1/cmr/m/n/10 24$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9838--9839 [][]$\OT1/cmr/m/n/10 96$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9840--9841 [][]$\OT1/cmr/m/n/10 16$. [] Overfull \hbox (2.5148pt too wide) in paragraph at lines 9842--9843 [][]$\OT1/cmr/m/n/10 36$. [] [221 ] [222] [223] [224] Underfull \hbox (badness 10000) in paragraph at lines 10283--10284 [][]\OT1/cmr/m/n/10 $$6$ quar-ters, $18$ ten-cent [] [225] [226] [227] [228] [229] [230] [231] [232] [233] [234] [235] [236] [237] [ 238] Underfull \hbox (badness 10000) in paragraph at lines 11388--11389 [][]$\OT1/cmr/m/n/10 (1 + 10\OML/cmm/m/it/10 a\OT1/cmr/m/n/10 )(1 + [] [239] [240] [241] [242] Overfull \hbox (24.36917pt too wide) in paragraph at lines 11738--11739 [][]$[]$\OT1/cmr/m/n/10 . [] [243] [244] Overfull \hbox (8.9993pt too wide) in paragraph at lines 11831--11832 [][]$[]$\OT1/cmr/m/n/10 . [] [245] [246] [247] Underfull \hbox (badness 10000) in paragraph at lines 12079--12080 [][]$\OT1/cmr/m/n/10 100$, [] Underfull \hbox (badness 10000) in paragraph at lines 12083--12084 [][]$\OT1/cmr/m/n/10 103$, [] Underfull \hbox (badness 10000) in paragraph at lines 12085--12086 [][]$\OT1/cmr/m/n/10 295$, [] Underfull \hbox (badness 10000) in paragraph at lines 12100--12101 [][]\OT1/cmr/m/n/10 Son, [] Underfull \hbox (badness 10000) in paragraph at lines 12106--12107 [][]\OT1/cmr/m/n/10 Son, [] Overfull \hbox (8.14185pt too wide) in paragraph at lines 12111--12112 [][]$\OT1/cmr/m/n/10 1[]$ dy. [] Overfull \hbox (12.12798pt too wide) in paragraph at lines 12113--12114 [][]$\OT1/cmr/m/n/10 1[]$ dy. [] Overfull \hbox (12.12798pt too wide) in paragraph at lines 12115--12116 [][]$\OT1/cmr/m/n/10 1[]$ dy. [] Overfull \hbox (6.75574pt too wide) in paragraph at lines 12117--12118 [][]$\OT1/cmr/m/n/10 15$ dy. [] Overfull \hbox (6.22795pt too wide) in paragraph at lines 12119--12120 [][]$\OT1/cmr/m/n/10 12$ hr. [] Overfull \hbox (6.75574pt too wide) in paragraph at lines 12121--12122 [][]$\OT1/cmr/m/n/10 10$ dy. [] Overfull \hbox (0.42635pt too wide) in paragraph at lines 12126--12127 [][]$\OT1/cmr/m/n/10 7[]$ hr. [] Overfull \hbox (0.42635pt too wide) in paragraph at lines 12132--12133 [][]$\OT1/cmr/m/n/10 1[]$ hr. [] Overfull \vbox (1.93811pt too high) has occurred while \output is active [] Overfull \vbox (1.93811pt too high) has occurred while \output is active [] [248] Underfull \hbox (badness 10000) in paragraph at lines 12188--12189 [][]$\OT1/cmr/m/n/10 90[] 0[] 30[]$; [] [249] Underfull \hbox (badness 10000) in paragraph at lines 12320--12321 [][]\OT1/cmr/m/n/10 $$6000$ at $4$%; [] Underfull \hbox (badness 10000) in paragraph at lines 12331--12332 [][]\OT1/cmr/m/n/10 Wheat, [] Underfull \hbox (badness 10000) in paragraph at lines 12333--12334 [][]\OT1/cmr/m/n/10 A, $$235$; [] Underfull \hbox (badness 10000) in paragraph at lines 12337--12338 [][]\OT1/cmr/m/n/10 Lemon, [] Underfull \hbox (badness 10000) in paragraph at lines 12339--12340 \OT1/cmr/m/n/10 ples; B, [] [250] Underfull \hbox (badness 10000) in paragraph at lines 12370--12371 [][]\OT1/cmr/m/n/10 Width, [] Underfull \hbox (badness 10000) in paragraph at lines 12370--12371 \OT1/cmr/m/n/10 12$ rd.; [] Underfull \hbox (badness 10000) in paragraph at lines 12370--12371 \OT1/cmr/m/n/10 length, [] [251] [252] [253] [1 ] [2] [3] [4] [5] [6] [7] [8] (./36670-t.aux) *File List* book.cls 2005/09/16 v1.4f Standard LaTeX document class bk12.clo 2005/09/16 v1.4f Standard LaTeX file (size option) inputenc.sty 2006/05/05 v1.1b Input encoding file latin1.def 2006/05/05 v1.1b Input encoding file ifthen.sty 2001/05/26 v1.1c Standard LaTeX ifthen package (DPC) amsmath.sty 2000/07/18 v2.13 AMS math features amstext.sty 2000/06/29 v2.01 amsgen.sty 1999/11/30 v2.0 amsbsy.sty 1999/11/29 v1.2d amsopn.sty 1999/12/14 v2.01 operator names amssymb.sty 2002/01/22 v2.2d amsfonts.sty 2001/10/25 v2.2f alltt.sty 1997/06/16 v2.0g defines alltt environment array.sty 2005/08/23 v2.4b Tabular extension package (FMi) multicol.sty 2006/05/18 v1.6g multicolumn formatting (FMi) graphicx.sty 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR) keyval.sty 1999/03/16 v1.13 key=value parser (DPC) graphics.sty 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR) trig.sty 1999/03/16 v1.09 sin cos tan (DPC) graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive pdftex.def 2007/01/08 v0.04d Graphics/color for pdfTeX indentfirst.sty 1995/11/23 v1.03 Indent first paragraph (DPC) textcase.sty 2004/10/07 v0.07 Text only upper/lower case changing (DPC) calc.sty 2005/08/06 v4.2 Infix arithmetic (KKT,FJ) fancyhdr.sty geometry.sty 2002/07/08 v3.2 Page Geometry geometry.cfg hyperref.sty 2007/02/07 v6.75r Hypertext links for LaTeX pd1enc.def 2007/02/07 v6.75r Hyperref: PDFDocEncoding definition (HO) hyperref.cfg 2002/06/06 v1.2 hyperref configuration of TeXLive kvoptions.sty 2006/08/22 v2.4 Connects package keyval with LaTeX options (HO ) url.sty 2005/06/27 ver 3.2 Verb mode for urls, etc. hpdftex.def 2007/02/07 v6.75r Hyperref driver for pdfTeX supp-pdf.tex color.sty 2005/11/14 v1.0j Standard LaTeX Color (DPC) color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive nameref.sty 2006/12/27 v2.28 Cross-referencing by name of section refcount.sty 2006/02/20 v3.0 Data extraction from references (HO) 36670-t.out 36670-t.out umsa.fd 2002/01/19 v2.2g AMS font definitions umsb.fd 2002/01/19 v2.2g AMS font definitions omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions ./images/fig1.pdf ./images/fig2.pdf ./images/fig3.pdf *********** ) Here is how much of TeX's memory you used: 5458 strings out of 94074 70648 string characters out of 1165154 142333 words of memory out of 1500000 7978 multiletter control sequences out of 10000+50000 19082 words of font info for 72 fonts, out of 1200000 for 2000 645 hyphenation exceptions out of 8191 29i,18n,46p,258b,494s stack positions out of 5000i,500n,6000p,200000b,5000s Output written on 36670-t.pdf (269 pages, 788109 bytes). PDF statistics: 2045 PDF objects out of 2073 (max. 8388607) 681 named destinations out of 1000 (max. 131072) 224 words of extra memory for PDF output out of 10000 (max. 10000000) 1j4a1r